ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-millikelvin dipolar molecules in a radio-frequency magneto-optical trap

129   0   0.0 ( 0 )
 نشر من قبل Eric Norrgard
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a scheme for magneto-optically trapping strontium monofluoride (SrF) molecules at temperatures one order of magnitude lower and phase space densities three orders of magnitude higher than obtained previously with laser-cooled molecules. In our trap, optical dark states are destabilized by rapidly and synchronously reversing the trapping laser polarizations and the applied magnetic field gradient. The number of molecules and trap lifetime are also significantly improved from previous work by loading the trap with high laser power and then reducing the power for long-term trapping. With this procedure, temperatures as low as 400 $mu$K are achieved.

قيم البحث

اقرأ أيضاً

We present the properties of a magneto-optical trap (MOT) of CaF molecules. We study the process of loading the MOT from a decelerated buffer-gas-cooled beam, and how best to slow this molecular beam in order to capture the most molecules. We determi ne how the number of molecules, the photon scattering rate, the oscillation frequency, damping constant, temperature, cloud size and lifetime depend on the key parameters of the MOT, especially the intensity and detuning of the main cooling laser. We compare our results to analytical and numerical models, to the properties of standard atomic MOTs, and to MOTs of SrF molecules. We load up to $2 times 10^4$ molecules, and measure a maximum scattering rate of $2.5 times 10^6$ s$^{-1}$ per molecule, a maximum oscillation frequency of 100 Hz, a maximum damping constant of 500 s$^{-1}$, and a minimum MOT rms radius of 1.5 mm. A minimum temperature of 730 $mu$K is obtained by ramping down the laser intensity to low values. The lifetime, typically about 100 ms, is consistent with a leak out of the cooling cycle with a branching ratio of about $6 times 10^{-6}$. The MOT has a capture velocity of about 11 m/s.
In this paper, we present a technique for magneto-optical cooling and trapping of neutral atoms using a single laser. The alternating-frequency magneto-optical trap (AF-MOT) uses an agile light source that sequentially switches between cooling and re pumping transition frequencies by tuning the injection current of the laser diode. We report on the experimental demonstration of such a system for 87Rb and 85Rb based on a micro-integrated extended cavity diode laser (ECDL) performing laser frequency jumps of up to 6.6 GHz with a tuning time in the microsecond regime and a repetition rate of up to 7.6 kHz. For that, a combination of a feed-forward for coarse frequency control and a feedback for precise locking was used. We discuss the results of the AF-MOT characterization in terms of atom numbers and cloud temperature for different operation parameters.
We study inelastic collisions between CaF molecules and $^{87}$Rb atoms in a dual-species magneto-optical trap. The presence of atoms increases the loss rate of molecules from the trap. By measuring the loss rates and density distributions, we determ ine a collisional loss rate coefficient $k_{2} = (1.43 pm 0.29) times 10^{-10}$ cm$^{3}$/s at a temperature of 2.4 mK. We show that this is not substantially changed by light-induced collisions or by varying the populations of excited-state atoms and molecules. The observed loss rate is close to the universal rate expected in the presence of fast loss at short range, and can be explained by rotation-changing collisions in the ground electronic state.
A large number of $^{87}$Rb atoms (up to $1.5 times 10^{11}$) is confined and cooled to $sim 200~mu$K in a magneto-optical trap. The resulting cloud of atoms exhibits spatio-temporal instabilities leading to chaotic behaviour resembling a turbulent f low of fluid. We apply the methods of the turbulence theory based on the structure functions analysis to classify and quantify the different degrees of excitation of turbulence, including its scaling and morphological properties in the moving cloud images.
We report the first observation of a non-dipole transition in an ultra-cold atomic vapor. We excite the 3P-4P electric quadrupole (E2) transition in $^{23}$Na confined in a Magneto-Optical Trap(MOT), and demonstrate its application to high-resolution spectroscopy by making the first measurement of the hyperfine structure of the 4P$_{1/2}$ level and extracting the magnetic dipole constant A $=$ 30.6 $pm$ 0.1 MHz. We use cw OODR (Optical-Optical Double Resonance) accompanied by photoinization to probe the transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا