ﻻ يوجد ملخص باللغة العربية
We develop a group-theoretical approach to describe $N$-component composite bosons as planar electrons attached to an odd number $f$ of Chern-Simons flux quanta. This picture arises when writing the Coulomb exchange interaction as a quantum Hall ferromagnet in terms of collective $U(N)$-spin operators. A spontaneously chosen ground state of $M$ electrons per Landau site breaks the symmetry from $U(N)$ to the stability subgroup $U(M)times U(N-M)$, so that coherent state excitations are labeled by points on the Grassmannian coset $U(N)/U(M)times U(N-M)$. The quantization of this Grassmann phase space corresponds to the carrier Hilbert space of unitary irreducible representations of $U(N)$ described by rectangular Young tableaux of $M$ rows and $f$ columns. We construct an embedding of the Hilbert space into Fock space by using a Schwinger realization of collective $U(N)$-spin operators as bilinear products of composite boson operators. We also build a system of Grassmann coherent states and discuss the classical limit of $U(N)$ quantum Hall ferromagnets in terms of nonlinear sigma models on Grasmannians.
We present Painlev{e} VI sigma form equations for the general Ising low and high temperature two-point correlation functions $ C(M,N)$ with $M leq N $ in the special case $ u = -k$ where $ u = , sinh 2E_h/k_BT/sinh 2E_v/k_BT$. More specifically four
We utilize a diagrammatic notation for invariant tensors to construct the Young projection operators for the irreducible representations of the unitary group U(n), prove their uniqueness, idempotency, and orthogonality, and rederive the formula for t
We study coherence and entanglement properties of the state space of a composite bi-fermion (two electrons pierced by $lambda$ magnetic flux lines) at one Landau site of a bilayer quantum Hall system. In particular, interlayer imbalance and entanglem
We apply a semi-classical method to compute the conformal field theory (CFT) data for the U(N)xU(N) non-abelian Higgs theory in four minus epsilon dimensions at its complex fixed point. The theory features more than one coupling and walking dynamics.
Recently it was shown that the scaling dimension of the operator $phi^n$ in $lambda(barphiphi)^2$ theory may be computed semiclassically at the Wilson-Fisher fixed point in $d=4-epsilon$, for generic values of $lambda n$, and this was verified to two