ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase glass and zero-temperature phase transition in a randomly frustrated two-dimensional quantum rotor model

67   0   0.0 ( 0 )
 نشر من قبل Lei-Han Tang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ground state of the quantum rotor model in two dimensions with random phase frustration is investigated. Extensive Monte Carlo simulations are performed on the corresponding (2+1)-dimensional classical model under the entropic sampling scheme. For weak quantum fluctuation, the system is found to be in a phase glass phase characterized by a finite compressibility and a finite value for the Edwards-Anderson order parameter, signifying long-ranged phase rigidity in both spatial and imaginary time directions. Scaling properties of the model near the transition to the gapped, Mott insulator state with vanishing compressibility are analyzed. At the quantum critical point, the dynamic exponent $z_{rm dyn}simeq 1.17$ is greater than one. Correlation length exponents in the spatial and imaginary time directions are given by $ usimeq 0.73$ and $ u_zsimeq 0.85$, respectively, both assume values greater than 0.6723 of the pure case. We speculate that the phase glass phase is superconducting rather than metallic in the zero current limit.

قيم البحث

اقرأ أيضاً

The ground-state phase diagram of a two-dimensional Bose system with dipole-dipole interactions is studied by means of quantum Monte Carlo technique. Our calculation predicts a quantum phase transition from gas to solid phase when the density increas es. In the gas phase the condensate fraction is calculated as a function of the density. Using Feynman approximation, the collective excitation branch is studied and appearance of a roton minimum is observed. Results of the static structure factor at both sides of the gas-solid phase are also presented. The Lindeman ratio at the transition point comes to be $gamma = 0.230(6)$. The condensate fraction in the gas phase is estimated as a function of the density.
We present a detailed description of the dynamics of the magnetic modes in the recently discovered superconducting pnictides using reliable self-consistent spin-wave theory and series expansion. Contrary to linear spin-wave theory, no gapless mode oc curs at the Neel wave vector. We discuss the scenario that the static magnetic moment is strongly reduced by magnetic fluctuations arising from the vicinity to a quantum phase transition. Smoking gun experiments to verify this scenario are proposed and possible results are predicted. Intriguingly in this scenario, the structural transition at finite temperature would be driven by an Ising transition in directional degrees of freedom.
The zero-temperature critical state of the two-dimensional gauge glass model is investigated. It is found that low-energy vortex configurations afford a simple description in terms of gapless, weakly interacting vortex-antivortex pair excitations. A linear dielectric screening calculation is presented in a renormalization group setting that yields a power-law decay of spin-wave stiffness with distance. These properties are in agreement with low-temperature specific heat and spin-glass susceptibility data obtained in large-scale multi-canonical Monte Carlo simulations.
The competition between d-wave superconductivity (SC) and antiferromagnetism (AF) in the high-Tc cuprates is investigated by studying the hole- and electron-doped two-dimensional Hubbard model with a recently proposed variational quantum-cluster theo ry. The approach is shown to provide a thermodynamically consistent determination of the particle number, provided that an overall shift of the on-site energies is treated as a variational parameter. The consequences for the single-particle excitation spectra and for the phase diagram are explored. By comparing the single-particle spectra with quantum Monte-Carlo (QMC) and experimental data, we verify that the low-energy excitations in a strongly-correlated electronic system are described appropriately. The cluster calculations also reproduce the overall ground-state phase diagram of the high-temperature superconductors. In particular, they include salient features such as the enhanced robustness of the antiferromagnetic state as a function of electron doping and the tendency towards phase separation into a mixed antiferromagnetic-superconducting phase at low-doping and a pure superconducting phase at high (both hole and electron) doping.
247 - N. Lemke , I. A. Campbell 1999
We show using extensive simulation results and physical arguments that an Ising system on a two dimensional square lattice, having interactions of random sign between first neighbors and ferromagnetic interactions between second neighbors, presents a phase transition at a non-zero temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا