ﻻ يوجد ملخص باللغة العربية
The zero-temperature critical state of the two-dimensional gauge glass model is investigated. It is found that low-energy vortex configurations afford a simple description in terms of gapless, weakly interacting vortex-antivortex pair excitations. A linear dielectric screening calculation is presented in a renormalization group setting that yields a power-law decay of spin-wave stiffness with distance. These properties are in agreement with low-temperature specific heat and spin-glass susceptibility data obtained in large-scale multi-canonical Monte Carlo simulations.
The gauge glass model offers an interesting example of a randomly frustrated system with a continuous O(2) symmetry. In two dimensions, the existence of a glass phase at low temperatures has long been disputed among numerical studies. To resolve this
Large-scale simulations have been performed on the current-driven two-dimensional XY gauge glass model with resistively-shunted-junction dynamics. It is observed that the linear resistivity at low temperatures tends to zero, providing strong evidence
In conventional spin glasses, the magnetic interaction is not strongly anisotropic and the entire spin system freezes at low temperature. In La2(Cu,Li)O4, for which the in-plane exchange interaction dominates the interplane one, only a fraction of sp
We use 3D numerical simulations to explore the phase diagram of driven flux line lattices in presence of weak random columnar disorder at finite temperature and high driving force. We show that the moving Bose glass phase exists in a large range of t
In this work it is studied the Hopfield fermionic spin glass model which allows interpolating from trivial randomness to a highly frustrated regime. Therefore, it is possible to investigate whether or not frustration is an essential ingredient which