ترغب بنشر مسار تعليمي؟ اضغط هنا

Antiferromagnetic to superconducting phase transition in the hole- and electron-doped Hubbard model at zero temperature

269   0   0.0 ( 0 )
 نشر من قبل Michael Potthoff
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The competition between d-wave superconductivity (SC) and antiferromagnetism (AF) in the high-Tc cuprates is investigated by studying the hole- and electron-doped two-dimensional Hubbard model with a recently proposed variational quantum-cluster theory. The approach is shown to provide a thermodynamically consistent determination of the particle number, provided that an overall shift of the on-site energies is treated as a variational parameter. The consequences for the single-particle excitation spectra and for the phase diagram are explored. By comparing the single-particle spectra with quantum Monte-Carlo (QMC) and experimental data, we verify that the low-energy excitations in a strongly-correlated electronic system are described appropriately. The cluster calculations also reproduce the overall ground-state phase diagram of the high-temperature superconductors. In particular, they include salient features such as the enhanced robustness of the antiferromagnetic state as a function of electron doping and the tendency towards phase separation into a mixed antiferromagnetic-superconducting phase at low-doping and a pure superconducting phase at high (both hole and electron) doping.

قيم البحث

اقرأ أيضاً

The quantum spin fluctuations of the S = 1/2 Cu ions are important in determining the physical properties of the high-transition temperature (high-Tc) copper oxide superconductors, but their possible role in the electron pairing for superconductivity remains an open question. The principal feature of the spin fluctuations in optimally doped high-Tc superconductors is a well defined magnetic resonance whose energy (Er) tracks Tc (as the composition is varied) and whose intensity develops like an order parameter in the superconducting state. We show that the suppression of superconductivity and its associated condensation energy by a magnetic field in the electron-doped high-Tc superconductor, Pr0.88LaCe0.12CuO4-d (Tc = 24 K), is accompanied by the complete suppression of the resonance and the concomitant emergence of static antiferromagnetic (AF) order. Our results demonstrate that the resonance is intimately related to the superconducting condensation energy, and thus suggest that it plays a role in the electron pairing and superconductivity.
124 - Yangmu Li , W. Tabis , G. Yu 2016
Systematic analysis of the planar resistivity, Hall effect and cotangent of the Hall angle for the electron-doped cuprates reveals underlying Fermi-liquid behavior even deep in the antiferromagnetic part of the phase diagram. The transport scattering rate exhibits a quadratic temperature dependence, and is nearly independent of doping, compound and carrier type (electrons vs. holes), and hence universal. Our analysis moreover indicates that the material-specific resistivity upturn at low temperatures and low doping has the same origin in both electron- and hole-doped cuprates.
70 - K. Jin , P. Bach , X. H. Zhang 2011
The superconducting transition temperature $T_{c}$ of multilayers of electron-doped cuprates, composed of underdoped (or undoped) and overdoped La% $_{2-x}$Ce$_{x}$CuO$_{4}$ (LCCO) and Pr$_{2-x}$Ce$_{x}$CuO$_{4}$ (PCCO) thin films, is found to increa se significantly with respect to the $T_{c}$ of the corresponding single-phase films. By investigating the critical current density of superlattices with different doping levels and layer thicknesses, we find that the $T_{c}$ enhancement is caused by a redistribution of charge over an anomalously large distance.
87 - S. Lupi , D. Nicoletti , O. Limaj 2009
By studying the optical conductivity of BSLCO and YCBCO, we show that the metal-to-insulator transition (MIT) in these hole-doped cuprates is driven by the opening of a small gap at low T in the far infrared. Its width is consistent with the observat ions of Angle-Resolved Photoemission Spectroscopy in other cuprates, along the nodal line of the k-space. The gap forms as the Drude term turns into a far-infrared absorption, whose peak frequency can be approximately predicted on the basis of a Mott-like transition. Another band in the mid infrared softens with doping but is less sensitive to the MIT.
The dynamical mean-field theory (DMFT) combined with the fluctuation exchange (FLEX) method, namely FLEX+DMFT, is an approach for correlated electron systems to incorporate both local and non-local long-range correlations in a self-consistent manner. We formulate FLEX+DMFT in a systematic way starting from a Luttinger-Ward functional, and apply it to study the $d$-wave superconductivity in the two-dimensional repulsive Hubbard model. The critical temperature ($T_c$) curve obtained in the FLEX+DMFT exhibits a dome structure as a function of the filling, which has not been clearly observed in the FLEX approach alone. We trace back the origin of the dome to the local vertex correction from DMFT that renders a filling dependence in the FLEX self-energy. We compare the results with those of GW+DMFT, where the $T_c$-dome structure is qualitatively reproduced due to the same vertex correction effect, but a crucial difference from FLEX+DMFT is that $T_c$ is always estimated below the N{e}el temperature in GW+DMFT. The single-particle spectral function obtained with FLEX+DMFT exhibits a double-peak structure as a precursor of the Hubbard bands at temperature above $T_c$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا