ﻻ يوجد ملخص باللغة العربية
The ground-state phase diagram of a two-dimensional Bose system with dipole-dipole interactions is studied by means of quantum Monte Carlo technique. Our calculation predicts a quantum phase transition from gas to solid phase when the density increases. In the gas phase the condensate fraction is calculated as a function of the density. Using Feynman approximation, the collective excitation branch is studied and appearance of a roton minimum is observed. Results of the static structure factor at both sides of the gas-solid phase are also presented. The Lindeman ratio at the transition point comes to be $gamma = 0.230(6)$. The condensate fraction in the gas phase is estimated as a function of the density.
Ensembles with long-range interactions between particles are promising for revealing strong quantum collective effects and many-body phenomena. Here we study the ground-state phase diagram of a two-dimensional Bose system with quadrupolar interaction
The ground state of the quantum rotor model in two dimensions with random phase frustration is investigated. Extensive Monte Carlo simulations are performed on the corresponding (2+1)-dimensional classical model under the entropic sampling scheme. Fo
We consider interacting vortices in a quasi-one-dimensional array of Josephson junctions with small capacitance. If the charging energy of a junction is of the order of the Josephson energy, the fluctuations of the superconducting order parameter in
We have investigated vortex states in two-dimensional superconductors under a oscillating magnetic field from a chiral helimagnet. We have solved the two-dimensional Ginzburg-Landau equations with finite element method. We have found that when the ma
Quantum Hall ferromagnetic transitions are typically achieved by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quan