ﻻ يوجد ملخص باللغة العربية
We develop category-theoretic framework for universal homogeneous objects, with some applications in the theory of Banach spaces, linear orderings, and in topology of compact spaces.
We study topological groups $G$ for which the universal minimal $G$-system $M(G)$, or the universal irreducible affine $G$-system $IA(G)$ are tame. We call such groups intrinsically tame and convexly intrinsically tame. These notions are generaliz
Quasi-abelian categories are abundant in functional analysis and representation theory. It is known that a quasi-abelian category $mathcal{E}$ is a cotilting torsionfree class of an abelian category. In fact, this property characterizes quasi-abelian
This paper addresses the growing need to process non-Euclidean data, by introducing a geometric deep learning (GDL) framework for building universal feedforward-type models compatible with differentiable manifold geometries. We show that our GDL mode
Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $mathcal{C}^0_{mathfrak{g}}$ be Hernandez-Leclercs category. For a duality datum $mathcal{D}$ in $mathcal{C}^0_{mathfrak{g}}$, we denote by $mathcal{F}_{mathcal{D
In The factorization of the Giry monad (arXiv:1707.00488v2) the author asserts that the category of convex spaces is equivalent to the category of Eilenberg-Moore algebras over the Giry monad. Some of the statements employed in the proof of this clai