ترغب بنشر مسار تعليمي؟ اضغط هنا

PBW theoretic approach to the module category of quantum affine algebras

255   0   0.0 ( 0 )
 نشر من قبل Masaki Kashiwara
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $mathcal{C}^0_{mathfrak{g}}$ be Hernandez-Leclercs category. For a duality datum $mathcal{D}$ in $mathcal{C}^0_{mathfrak{g}}$, we denote by $mathcal{F}_{mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $mathcal{D}$ to provide the functor $mathcal{F}_{mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $mathcal{C}^0_{mathfrak{g}}$, and show that all simple modules in $mathcal{C}^0_{mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.



قيم البحث

اقرأ أيضاً

Let $mathfrak{g}_0$ be a simple Lie algebra of type ADE and let $U_q(mathfrak{g})$ be the corresponding untwisted quantum affine algebra. We show that there exists an action of the braid group $B(mathfrak{g}_0)$ on the quantum Grothendieck ring $K_t( mathfrak{g})$ of Hernandez-Leclercs category $C_{mathfrak{g}}^0$. Focused on the case of type $A_{N-1}$, we construct a family of monoidal autofunctors ${mathscr{S}_i}_{iin mathbb{Z}}$ on a localization $T_N$ of the category of finite-dimensional graded modules over the quiver Hecke algebra of type $A_{infty}$. Under an isomorphism between the Grothendieck ring $K(T_N)$ of $T_N$ and the quantum Grothendieck ring $K_t({A^{(1)}_{N-1}})$, the functors ${mathscr{S}_i}_{1le ile N-1}$ recover the action of the braid group $B(A_{N-1})$. We investigate further properties of these functors.
Let $U_q(mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $mathcal{C}_{mathfrak{g}}$ be Hernandez-Leclercs category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $mathcal{C}_{mathfr ak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $Lambda$ and $Lambda^infty$ introduced by the authors. We next define the reflections $mathcal{S}_k$ and $mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp. complete) duality datum, then $mathcal{S}_k(D)$ and $mathcal{S}_k^{-1}(D)$ are also strong (resp. complete ) duality data. We finally introduce the notion of affine cuspidal modules in $mathcal{C}_{mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.
146 - Jie Xiao , Han Xu , Minghui Zhao 2021
Let $textbf{U}^+$ be the positive part of the quantum group $textbf{U}$ associated with a generalized Cartan matrix. In the case of finite type, Lusztig constructed the canonical basis $textbf{B}$ of $textbf{U}^+$ via two approaches. The first one is an elementary algebraic construction via Ringel-Hall algebra realization of $textbf{U}^+$ and the second one is a geometric construction. The geometric construction of canonical basis can be generalized to the cases of all types. The generalization of the elementary algebraic construction to affine type is an important problem. We give several main results of algebraic constructions to the affine canonical basis in this ariticle. These results are given by Beck-Nakajima, Lin-Xiao-Zhang, Xiao-Xu-Zhao, respectively.
We introduce and investigate new invariants on the pair of modules $M$ and $N$ over quantum affine algebras $U_q(mathfrak{g})$ by analyzing their associated R-matrices. From new invariants, we provide a criterion for a monoidal category of finite-dim ensional integrable $U_q(mathfrak{g})$-modules to become a monoidal categorification of a cluster algebra.
Let $U_q(mathfrak{g})$ be a twisted affine quantum group of type $A_{N}^{(2)}$ or $D_{N}^{(2)}$ and let $mathfrak{g}_{0}$ be the finite-dimensional simple Lie algebra of type $A_{N}$ or $D_{N}$. For a Dynkin quiver of type $mathfrak{g}_{0}$, we defin e a full subcategory ${mathcal C}_{Q}^{(2)}$ of the category of finite-dimensional integrable $U_q(mathfrak{g})$-modules, a twisted version of the category ${mathcal C}_{Q}$ introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur-Weyl duality, we construct an exact faithful KLR-type duality functor ${mathcal F}_{Q}^{(2)}: Rep(R) rightarrow {mathcal C}_{Q}^{(2)}$, where $Rep(R)$ is the category of finite-dimensional modules over the quiver Hecke algebra $R$ of type $mathfrak{g}_{0}$ with nilpotent actions of the generators $x_k$. We show that ${mathcal F}_{Q}^{(2)}$ sends any simple object to a simple object and induces a ring isomorphism $K(Rep(R)) simeq K({mathcal C}_{Q}^{(2)})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا