ﻻ يوجد ملخص باللغة العربية
Quasi-abelian categories are abundant in functional analysis and representation theory. It is known that a quasi-abelian category $mathcal{E}$ is a cotilting torsionfree class of an abelian category. In fact, this property characterizes quasi-abelian categories. This ambient abelian category is derived equivalent to the category $mathcal{E}$, and can be constructed as the heart $mathcal{LH}(mathcal{E})$ of a $operatorname{t}$-structure on the bounded derived category $operatorname{D^b}(mathcal{E})$ or as the localization of the category of monomorphisms in $mathcal{E}.$ However, there are natural examples of categories in functional analysis which are not quasi-abelian, but merely one-sided quasi-abelian or even weaker. Examples are the category of $operatorname{LB}$-spaces or the category of complete Hausdorff locally convex spaces. In this paper, we consider additive regular categories as a generalization of quasi-abelian categories that covers the aforementioned examples. These categories can be characterized as pre-torsionfree subcategories of abelian categories. As for quasi-abelian categories, we show that such an ambient abelian category of an additive regular category $mathcal{E}$ can be found as the heart of a $operatorname{t}$-structure on the bounded derived category $operatorname{D^b}(mathcal{E})$, or as the localization of the category of monomorphisms of $mathcal{E}$. In our proof of this last construction, we formulate and prove a version of Auslanders formula for additive regular categories. Whereas a quasi-abelian category is an exact category in a natural way, an additive regular category has a natural one-sided exact structure. Such a one-sided exact category can be 2-universally embedded into its exact hull. We show that the exact hull of an additive regular category is again an additive regular category.
We develop category-theoretic framework for universal homogeneous objects, with some applications in the theory of Banach spaces, linear orderings, and in topology of compact spaces.
Starting with a k-linear or DG category admitting a (homotopy) Serre functor, we construct a k-linear or DG 2-category categorifying the Heisenberg algebra of the numerical K-group of the original category. We also define a 2-categorical analogue of
We show that the comma category $(mathcal{F}downarrowmathbf{Grp})$ of groups under the free group functor $mathcal{F}: mathbf{Set} to mathbf{Grp}$ contains the category $mathbf{Gph}$ of simple graphs as a full coreflective subcategory. More broadly,
In The factorization of the Giry monad (arXiv:1707.00488v2) the author asserts that the category of convex spaces is equivalent to the category of Eilenberg-Moore algebras over the Giry monad. Some of the statements employed in the proof of this clai
We study track categories (i.e., groupoid-enriched categories) endowed with additive structure similar to that of a 1-truncated DG-category, except that composition is not assumed right linear. We show that if such a track category is right linear up