ﻻ يوجد ملخص باللغة العربية
It is an amazing and a bit counter-intuitive discovery by Micha Perles from the sixties that there are ``non-rational polytopes: combinatorial types of convex polytopes that cannot be realized with rational vertex coordinates. We describe a simple construction of non-rational polytopes that does not need duality (Perles ``Gale diagrams): It starts from a non-rational point configuration in the plane, and proceeds with so-called Lawrence extensions. We also show that there are non-rational polyhedral surfaces in 3-space, a discovery by Ulrich Brehm from 1997. His construction also starts from any non-rational point configuration in the plane, and then performs what one should call Brehm extensions, in order to obtain non-rational partial surfaces. These examples and objects are first mile stones on the way to the remarkable universality theorems for polytopes and for polyhedral surfaces by Mnev (1986), Richter-Gebert (1994), and Brehm (1997).
We will study the angle sums of polytopes, listed in the $alpha$-vector, working to exploit the analogy between the f-vector of faces in each dimension and the alpha-vector of angle sums. The Gram and Perles relations on the $alpha$-vector are analog
For $3$-dimensional convex polytopes, inscribability is a classical property that is relatively well-understood due to its relation with Delaunay subdivisions of the plane and hyperbolic geometry. In particular, inscribability can be tested in polyno
In this paper, we will describe the space spanned by the angle-sums of polytopes, recorded in the alpha-vector. We will consider the angles sums of simplices and the angles sums and face numbers of simplicial polytopes and general polytopes. We will
We describe a method for computing the highest degree coefficients of a weighted Ehrhart quasi-polynomial for a rational simple polytope.
A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in thr