ترغب بنشر مسار تعليمي؟ اضغط هنا

Highest coefficients of weighted Ehrhart quasi-polynomials for a rational polytope

66   0   0.0 ( 0 )
 نشر من قبل Nicole Berline
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a method for computing the highest degree coefficients of a weighted Ehrhart quasi-polynomial for a rational simple polytope.

قيم البحث

اقرأ أيضاً

This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients o f the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a polynomial function h. Our technique is based on a refinement of an algorithm of A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), pp. 1449--1466] in the unweighted case (i.e., h = 1). In contrast to Barvinoks method, our method is local, obtains an approximation on the level of generating functions, handles the general weighted case, and provides the coefficients in closed form as step polynomials of the dilation. To demonstrate the practicality of our approach we report on computational experiments which show even our simple implementation can compete with state of the art software.
Let $P(b)subset R^d$ be a semi-rational parametric polytope, where $b=(b_j)in R^N$ is a real multi-parameter. We study intermediate sums of polynomial functions $h(x)$ on $P(b)$, $$ S^L (P(b),h)=sum_{y}int_{P(b)cap (y+L)} h(x) mathrm dx, $$ where w e integrate over the intersections of $P(b)$ with the subspaces parallel to a fixed rational subspace $L$ through all lattice points, and sum the integrals. The purely discrete sum is of course a particular case ($L=0$), so $S^0(P(b), 1)$ counts the integer points in the parametric polytopes. The chambers are the open conical subsets of $R^N$ such that the shape of $P(b)$ does not change when $b$ runs over a chamber. We first prove that on every chamber of $R^N$, $S^L (P(b),h)$ is given by a quasi-polynomial function of $bin R^N$. A key point of our paper is an analysis of the interplay between two notions of degree on quasi-polynomials: the usual polynomial degree and a filtration, called the local degree. Then, for a fixed $kleq d$, we consider a particular linear combination of such intermediate weighted sums, which was introduced by Barvinok in order to compute efficiently the $k+1$ highest coefficients of the Ehrhart quasi-polynomial which gives the number of points of a dilated rational polytope. Thus, for each chamber, we obtain a quasi-polynomial function of $b$, which we call Barvinoks patched quasi-polynomial (at codimension level $k$). Finally, for each chamber, we introduce a new quasi-polynomial function of $b$, the cone-by-cone patched quasi-polynomial (at codimension level $k$), defined in a refined way by linear combinations of intermediate generating functions for the cones at vertices of $P(b)$. We prove that both patched quasi-polynomials agree with the discrete weighted sum $bmapsto S^0(P(b),h)$ in the terms corresponding to the $k+1$ highest polynomial degrees.
The first author showed that for a given point $p$ in an $nk$-polytope $P$ there are $n$ points in the $k$-faces of $P$, whose barycenter is $p$. We show that we can increase the dimension of $P$ by $r$, if we allow $r$ of the points to be in $(k+1)$ -faces. While we can force points with a prescribed barycenter into faces of dimensions $k$ and $k+1$, we show that the gap in dimensions of these faces can never exceed one. We also investigate the weighted analogue of this question, where a convex combination with predetermined coefficients of $n$ points in $k$-faces of an $nk$-polytope is supposed to equal a given target point. While weights that are not all equal may be prescribed for certain values of $n$ and $k$, any coefficient vector that yields a point different from the barycenter cannot be prescribed for fixed $n$ and sufficiently large $k$.
A graph whose nodes have degree 1 or 3 is called a ${1,3}$-graph. Liu and Osserman associated a polytope to each ${1,3}$-graph and studied the Ehrhart quasi-polynomials of these polytopes. They showed that the vertices of these polytopes have coordin ates in the set ${0,frac14,frac12,1}$, which implies that the period of their Ehrhart quasi-polynomials is either 1, 2, or 4. We show that the period of the Ehrhart quasi-polynomial of these polytopes is at most 2 if the graph is a tree or a cubic graph, and it is equal to 4 otherwise. In the process of proving this theorem, several interesting combinatorial and geometric properties of these polytopes were uncovered, arising from the structure of their associated graphs. The tools developed here may find other applications in the study of Ehrhart quasi-polynomials and enumeration problems for other polytopes that arise from graphs. Additionally, we have identified some interesting connections with triangulations of 3-manifolds.
The scissors congruence conjecture for the unimodular group is an analogue of Hilberts third problem, for the equidecomposability of polytopes. Liu and Osserman studied the Ehrhart quasi-polynomials of polytopes naturally associated to graphs whose v ertices have degree one or three. In this paper, we prove the scissors congruence conjecture, posed by Haase and McAllister, for this class of polytopes. The key ingredient in the proofs is the nearest neighbor interchange on graphs and a naturally arising piecewise unimodular transformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا