ﻻ يوجد ملخص باللغة العربية
In this paper, we will describe the space spanned by the angle-sums of polytopes, recorded in the alpha-vector. We will consider the angles sums of simplices and the angles sums and face numbers of simplicial polytopes and general polytopes. We will construct families of polytopes whose angle sums span the spaces of polytopes defined by the Gram and Perles equations, analogues of the Euler and Dehn-Sommerville equations. We show that the dimensions of the affine span of the space of angle sums of simplices is floor[(d-1)/2] + 1, and that of the angle sums and face numbers of simplicial polytopes and general polytopes are d-1 and 2d-3 respectively.
We will study the angle sums of polytopes, listed in the $alpha$-vector, working to exploit the analogy between the f-vector of faces in each dimension and the alpha-vector of angle sums. The Gram and Perles relations on the $alpha$-vector are analog
Robertson (1988) suggested a model for the realization space of a convex d-dimensional polytope and an approach via the implicit function theorem, which -- in the case of a full rank Jacobian -- proves that the realization space is a manifold of dime
It is an amazing and a bit counter-intuitive discovery by Micha Perles from the sixties that there are ``non-rational polytopes: combinatorial types of convex polytopes that cannot be realized with rational vertex coordinates. We describe a simple
For $3$-dimensional convex polytopes, inscribability is a classical property that is relatively well-understood due to its relation with Delaunay subdivisions of the plane and hyperbolic geometry. In particular, inscribability can be tested in polyno
Negative type inequalities arise in the study of embedding properties of metric spaces, but they often reduce to intractable combinatorial problems. In this paper we study more quantitati