ﻻ يوجد ملخص باللغة العربية
A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independent locally tangential infinitesimal motions while the cylinder has 2, we obtain here a Laman-Henneberg theorem for frameworks on algebraic surfaces with a 1-dimensional space of tangential motions. Such surfaces include the torus, helicoids and surfaces of revolution. The relevant class of graphs are the (2,1)-tight graphs, in contrast to (2,3)-tightness for the plane/sphere and (2,2)-tightness for the cylinder. The proof uses a new characterisation of simple (2,1)-tight graphs and an inductive construction requiring generic rigidity preservation for 5 graph moves, including the two Henneberg moves, an edge joining move and various vertex surgery moves.
A 2-dimensional point-line framework is a collection of points and lines in the plane which are linked by pairwise constraints that fix some angles between pairs of lines and also some point-line and point-point distances. It is rigid if every contin
Combinatorial characterisations are obtained of symmetric and anti-symmetric infinitesimal rigidity for two-dimensional frameworks with reflectional symmetry in the case of norms where the unit ball is a quadrilateral and where the reflection acts fr
We develop a combinatorial rigidity theory for symmetric bar-joint frameworks in a general finite dimensional normed space. In the case of rotational symmetry, matroidal Maxwell-type sparsity counts are identified for a large class of $d$-dimensional
Define the augmented square twist origami crease pattern to be the classic square twist crease pattern with one crease added along a diagonal of the twisted square. In this paper we fully describe the rigid foldability of this new crease pattern. Spe
A rigidity theory is developed for frameworks in a metric space with two types of distance constraints. Mixed sparsity graph characterisations are obtained for the infinitesimal and continuous rigidity of completely regular bar-joint frameworks in a