ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning for Dynamic Bidding in Cognitive Radio Resources

284   0   0.0 ( 0 )
 نشر من قبل Fangwen Fu
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we model the various wireless users in a cognitive radio network as a collection of selfish, autonomous agents that strategically interact in order to acquire the dynamically available spectrum opportunities. Our main focus is on developing solutions for wireless users to successfully compete with each other for the limited and time-varying spectrum opportunities, given the experienced dynamics in the wireless network. We categorize these dynamics into two types: one is the disturbance due to the environment (e.g. wireless channel conditions, source traffic characteristics, etc.) and the other is the impact caused by competing users. To analyze the interactions among users given the environment disturbance, we propose a general stochastic framework for modeling how the competition among users for spectrum opportunities evolves over time. At each stage of the dynamic resource allocation, a central spectrum moderator auctions the available resources and the users strategically bid for the required resources. The joint bid actions affect the resource allocation and hence, the rewards and future strategies of all users. Based on the observed resource allocation and corresponding rewards from previous allocations, we propose a best response learning algorithm that can be deployed by wireless users to improve their bidding policy at each stage. The simulation results show that by deploying the proposed best response learning algorithm, the wireless users can significantly improve their own performance in terms of both the packet loss rate and the incurred cost for the used resources.



قيم البحث

اقرأ أيضاً

In this paper, a novel spectrum association approach for cognitive radio networks (CRNs) is proposed. Based on a measure of both inference and confidence as well as on a measure of quality-of-service, the association between secondary users (SUs) in the network and frequency bands licensed to primary users (PUs) is investigated. The problem is formulated as a matching game between SUs and PUs. In this game, SUs employ a soft-decision Bayesian framework to detect PUs signals and, eventually, rank them based on the logarithm of the a posteriori ratio. A performance measure that captures both the ranking metric and rate is further computed by the SUs. Using this performance measure, a PU evaluates its own utility function that it uses to build its own association preferences. A distributed algorithm that allows both SUs and PUs to interact and self-organize into a stable match is proposed. Simulation results show that the proposed algorithm can improve the sum of SUs rates by up to 20 % and 60 % relative to the deferred acceptance algorithm and random channel allocation approach, respectively. The results also show an improved convergence time.
Cognitive radio technology, which is designed to enhance spectrum utilization, depends on the success of opportunistic access, where secondary users (SUs) exploit spectrum void unoccupied by primary users (PUs) for transmissions. We note that the sys tem behaviors are very similar to the interactions among different species coexisting in an ecosystem. However, SUs of a selfish nature or of misleading information may make concurrent transmissions with PUs for additional incentives, and thus disrupt the entire ecosystem. By exploiting this vulnerability, this paper proposes a novel distributed denial-of-service (DoS) attack where invasive species, i.e., malicious users (MUs), induce originally normal-behaved SUs to execute concurrent transmissions with PUs and thus collapse the cognitive radio network. We adopt stochastic geometry to model the spatial distributions of PUs, SUs, and MUs for the analysis of the mutual interference among them. The access strategy of each SU in the spectrum sharing ecosystem, which evolves with the experienced payoffs and interference, is modeled by an evolutionary game. Based on the evolutionary stable strategy concept, we could efficiently identify the fragile operating region at which normal-behaved SUs are eventually evolved to conduct concurrent transmissions and thus to cause the ruin of the network.
Over the last decade, digital media (web or app publishers) generalized the use of real time ad auctions to sell their ad spaces. Multiple auction platforms, also called Supply-Side Platforms (SSP), were created. Because of this multiplicity, publish ers started to create competition between SSPs. In this setting, there are two successive auctions: a second price auction in each SSP and a secondary, first price auction, called header bidding auction, between SSPs.In this paper, we consider an SSP competing with other SSPs for ad spaces. The SSP acts as an intermediary between an advertiser wanting to buy ad spaces and a web publisher wanting to sell its ad spaces, and needs to define a bidding strategy to be able to deliver to the advertisers as many ads as possible while spending as little as possible. The revenue optimization of this SSP can be written as a contextual bandit problem, where the context consists of the information available about the ad opportunity, such as properties of the internet user or of the ad placement.Using classical multi-armed bandit strategies (such as the origin
This paper introduces a machine learning based collaborative multi-band spectrum sensing policy for cognitive radios. The proposed sensing policy guides secondary users to focus the search of unused radio spectrum to those frequencies that persistent ly provide them high data rate. The proposed policy is based on machine learning, which makes it adaptive with the temporally and spatially varying radio spectrum. Furthermore, there is no need for dynamic modeling of the primary activity since it is implicitly learned over time. Energy efficiency is achieved by minimizing the number of assigned sensors per each subband under a constraint on miss detection probability. It is important to control the missed detections because they cause collisions with primary transmissions and lead to retransmissions at both the primary and secondary user. Simulations show that the proposed machine learning based sensing policy improves the overall throughput of the secondary network and improves the energy efficiency while controlling the miss detection probability.
369 - Kan Ren , Jiarui Qin , Lei Zheng 2019
The emergence of real-time auction in online advertising has drawn huge attention of modeling the market competition, i.e., bid landscape forecasting. The problem is formulated as to forecast the probability distribution of market price for each ad a uction. With the consideration of the censorship issue which is caused by the second-price auction mechanism, many researchers have devoted their efforts on bid landscape forecasting by incorporating survival analysis from medical research field. However, most existing solutions mainly focus on either counting-based statistics of the segmented sample clusters, or learning a parameterized model based on some heuristic assumptions of distribution forms. Moreover, they neither consider the sequential patterns of the feature over the price space. In order to capture more sophisticated yet flexible patterns at fine-grained level of the data, we propose a Deep Landscape Forecasting (DLF) model which combines deep learning for probability distribution forecasting and survival analysis for censorship handling. Specifically, we utilize a recurrent neural network to flexibly model the conditional winning probability w.r.t. each bid price. Then we conduct the bid landscape forecasting through probability chain rule with strict mathematical derivations. And, in an end-to-end manner, we optimize the model by minimizing two negative likelihood losses with comprehensive motivations. Without any specific assumption for the distribution form of bid landscape, our model shows great advantages over previous works on fitting various sophisticated market price distributions. In the experiments over two large-scale real-world datasets, our model significantly outperforms the state-of-the-art solutions under various metrics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا