ﻻ يوجد ملخص باللغة العربية
In this paper, a novel spectrum association approach for cognitive radio networks (CRNs) is proposed. Based on a measure of both inference and confidence as well as on a measure of quality-of-service, the association between secondary users (SUs) in the network and frequency bands licensed to primary users (PUs) is investigated. The problem is formulated as a matching game between SUs and PUs. In this game, SUs employ a soft-decision Bayesian framework to detect PUs signals and, eventually, rank them based on the logarithm of the a posteriori ratio. A performance measure that captures both the ranking metric and rate is further computed by the SUs. Using this performance measure, a PU evaluates its own utility function that it uses to build its own association preferences. A distributed algorithm that allows both SUs and PUs to interact and self-organize into a stable match is proposed. Simulation results show that the proposed algorithm can improve the sum of SUs rates by up to 20 % and 60 % relative to the deferred acceptance algorithm and random channel allocation approach, respectively. The results also show an improved convergence time.
Cognitive radio technology, which is designed to enhance spectrum utilization, depends on the success of opportunistic access, where secondary users (SUs) exploit spectrum void unoccupied by primary users (PUs) for transmissions. We note that the sys
In cognitive radio networks (CRNs), spectrum trading is an efficient way for secondary users (SUs) to achieve dynamic spectrum access and to bring economic benefits for the primary users (PUs). Existing methods requires full payment from SU, which bl
With the development of the 5G and Internet of Things, amounts of wireless devices need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought u
Two-tier networks, comprising a conventional cellular network overlaid with shorter range hotspots (e.g. femtocells, distributed antennas, or wired relays), offer an economically viable way to improve cellular system capacity. The capacity-limiting f
Blind rendezvous is a fundamental problem in cognitive radio networks. The problem involves a collection of agents (radios) that wish to discover each other in the blind setting where there is no shared infrastructure and they initially have no knowl