ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of a SSPs Header Bidding Strategy using Thompson Sampling

139   0   0.0 ( 0 )
 نشر من قبل Aurelien Garivier
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the last decade, digital media (web or app publishers) generalized the use of real time ad auctions to sell their ad spaces. Multiple auction platforms, also called Supply-Side Platforms (SSP), were created. Because of this multiplicity, publishers started to create competition between SSPs. In this setting, there are two successive auctions: a second price auction in each SSP and a secondary, first price auction, called header bidding auction, between SSPs.In this paper, we consider an SSP competing with other SSPs for ad spaces. The SSP acts as an intermediary between an advertiser wanting to buy ad spaces and a web publisher wanting to sell its ad spaces, and needs to define a bidding strategy to be able to deliver to the advertisers as many ads as possible while spending as little as possible. The revenue optimization of this SSP can be written as a contextual bandit problem, where the context consists of the information available about the ad opportunity, such as properties of the internet user or of the ad placement.Using classical multi-armed bandit strategies (such as the origin



قيم البحث

اقرأ أيضاً

109 - Yi Liu , Veronika Rockova 2020
Thompson sampling is a heuristic algorithm for the multi-armed bandit problem which has a long tradition in machine learning. The algorithm has a Bayesian spirit in the sense that it selects arms based on posterior samples of reward probabilities of each arm. By forging a connection between combinatorial binary bandits and spike-and-slab variable selection, we propose a stochastic optimization approach to subset selection called Thompson Variable Selection (TVS). TVS is a framework for interpretable machine learning which does not rely on the underlying model to be linear. TVS brings together Bayesian reinforcement and machine learning in order to extend the reach of Bayesian subset selection to non-parametric models and large datasets with very many predictors and/or very many observations. Depending on the choice of a reward, TVS can be deployed in offline as well as online setups with streaming data batches. Tailoring multiplay bandits to variable selection, we provide regret bounds without necessarily assuming that the arm mean rewards be unrelated. We show a very strong empirical performance on both simulated and real data. Unlike deterministic optimization methods for spike-and-slab variable selection, the stochastic nature makes TVS less prone to local convergence and thereby more robust.
Bayesian optimization (BO) is a prominent approach to optimizing expensive-to-evaluate black-box functions. The massive computational capability of edge devices such as mobile phones, coupled with privacy concerns, has led to a surging interest in fe derated learning (FL) which focuses on collaborative training of deep neural networks (DNNs) via first-order optimization techniques. However, some common machine learning tasks such as hyperparameter tuning of DNNs lack access to gradients and thus require zeroth-order/black-box optimization. This hints at the possibility of extending BO to the FL setting (FBO) for agents to collaborate in these black-box optimization tasks. This paper presents federated Thompson sampling (FTS) which overcomes a number of key challenges of FBO and FL in a principled way: We (a) use random Fourier features to approximate the Gaussian process surrogate model used in BO, which naturally produces the parameters to be exchanged between agents, (b) design FTS based on Thompson sampling, which significantly reduces the number of parameters to be exchanged, and (c) provide a theoretical convergence guarantee that is robust against heterogeneous agents, which is a major challenge in FL and FBO. We empirically demonstrate the effectiveness of FTS in terms of communication efficiency, computational efficiency, and practical performance.
We study the use of policy gradient algorithms to optimize over a class of generalized Thompson sampling policies. Our central insight is to view the posterior parameter sampled by Thompson sampling as a kind of pseudo-action. Policy gradient methods can then be tractably applied to search over a class of sampling policies, which determine a probability distribution over pseudo-actions (i.e., sampled parameters) as a function of observed data. We also propose and compare policy gradient estimators that are specialized to Bayesian bandit problems. Numerical experiments demonstrate that direct policy search on top of Thompson sampling automatically corrects for some of the algorithms known shortcomings and offers meaningful improvements even in long horizon problems where standard Thompson sampling is extremely effective.
Wireless communication systems operate in complex time-varying environments. Therefore, selecting the optimal configuration parameters in these systems is a challenging problem. For wireless links, emph{rate selection} is used to select the optimal d ata transmission rate that maximizes the link throughput subject to an application-defined latency constraint. We model rate selection as a stochastic multi-armed bandit (MAB) problem, where a finite set of transmission rates are modeled as independent bandit arms. For this setup, we propose Con-TS, a novel constrained version of the Thompson sampling algorithm, where the latency requirement is modeled by a high-probability linear constraint. We show that for Con-TS, the expected number of constraint violations over T transmission intervals is upper bounded by O(sqrt{KT}), where K is the number of available rates. Further, the expected loss in cumulative throughput compared to the optimal rate selection scheme (i.e., the egret is also upper bounded by O(sqrt{KT log K}). Through numerical simulations, we demonstrate that Con-TS significantly outperforms state-of-the-art bandit schemes for rate selection.
Efficient exploration in bandits is a fundamental online learning problem. We propose a variant of Thompson sampling that learns to explore better as it interacts with bandit instances drawn from an unknown prior. The algorithm meta-learns the prior and thus we call it MetaTS. We propose several efficient implementations of MetaTS and analyze it in Gaussian bandits. Our analysis shows the benefit of meta-learning and is of a broader interest, because we derive a novel prior-dependent Bayes regret bound for Thompson sampling. Our theory is complemented by empirical evaluation, which shows that MetaTS quickly adapts to the unknown prior.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا