ترغب بنشر مسار تعليمي؟ اضغط هنا

Long GRBs from binary stars: runaway, Wolf-Rayet progenitors

62   0   0.0 ( 0 )
 نشر من قبل Matteo Cantiello
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution; the latter had previously been shown to provide collapsars below a certain metallicity threshold for single stars. The binary channel presented here may provide a means for massive stars to obtain the high rotation rates required to evolve quasi-chemically homogeneous and fulfill the collapsar scenario. Moreover, it suggests that a possibly large fraction of long gamma-ray bursts occurs in runaway stars.

قيم البحث

اقرأ أيضاً

94 - D. M.-A. Meyer 2020
Wolf-Rayet stars are advanced evolutionary stages of massive stars. Despite their large mass-loss rates and high wind velocities, none of them display a bow shock, although a fraction of them are classified as runaway. Our 2.5-D numerical simulations of circumstellar matter around a 60Mo runaway star show that the fast Wolf-Rayet stellar wind is released into a wind-blown cavity filled with various shocks and discontinuities generated throughout the precedent evolutionary phases. The resulting fast-wind slow-wind interaction leads to the formation of spherical shells of swept-up dusty material similar to those observed in near infrared 24 micron with Spitzer, and which appear to be co-moving with the runaway massive stars, regardless of their proper motion and/or the properties of the local ambient medium. We interpret bright infrared rings around runaway Wolf-Rayet stars in the Galactic plane, like WR138a, as indication of their very high initial masses and a complex evolutionary history. Stellar-wind bow shocks become faint as stars run in diluted media, therefore, our results explain the absence of detected bow shocks around Galactic Wolf-Rayet stars such as the high-latitude, very fast-moving objects WR71, WR124 and WR148. Our results show that the absence of a bow shock is consistent with a runaway nature of some Wolf-Rayet stars. This questions the in-situ star formation scenario of high-latitude Wolf-Rayet stars in favor of dynamical ejection from birth sites in the Galactic plane.
57 - L. M. Dray 2005
We present numerical simulations of the runaway fractions expected amongst O and Wolf-Rayet star populations resulting from stars ejected from binaries by the supernova of the companion. Observationally the runaway fraction for both types of star is similar, prompting the explanation that close dynamical interactions are the main cause of these high-velocity stars. We show that, provided that the initial binary fraction is high, a scenario in which two-thirds of massive runaways are from supernovae is consistent with these observations. Our models also predict a low frequency of runaways with neutron star companions and a very low fraction of observable Wolf-Rayet--compact companion systems.
Near infrared spectroscopy and photometry of the Wolf-Rayet Star WR 143 (HD 195177) were obtained in the $JHK$ photometric bands. High resolution spectra observed in the J and H bands exhibit narrow 1.083-micron He I line and the H I Pa Beta and the Brackett series lines in emission superposed on the broad emission line spectrum of the Wolf-Rayet star, giving strong indications of the presence of a companion. From the narrow emission lines observed, the companion is identified to be an early-type Be star. The photometric magnitudes exhibit variations in the JHK bands which are probably due to the variability of the companion star. The flux density distribution is too steep for a Wolf-Rayet atmosphere. This is identified to be mainly due to the increasing contribution from the early-type companion star towards shorter wavelengths.
Radioisotopes are natural clocks which can be used to estimate the age of the solar system. They also influence the shape of supernova light curves. In addition, the diffuse emission at 1.8 MeV from the decay of 26Al may provide a measure of the pres ent day nucleosynthetic activity in the Galaxy. Therefore, even if radionuclides represent only a tiny fraction of the cosmic matter, they carry a unique piece of information. A large number of radioisotopes are produced by massive stars at the time of their supernova explosion. A more or less substantial fraction of them are also synthesized during the previous hydrostatic burning phases. These nuclides are then ejected either at the time of the supernova event, or through stellar winds during their hydrostatic burning phases. This paper focusses of the non explosive ejection of radionuclides by non-rotating or rotating Wolf-Rayet stars.
Infrared imaging of the colliding-wind binary Apep has revealed a spectacular dust plume with complicated internal dynamics that challenges standard colliding-wind binary physics. Such challenges can be potentially resolved if a rapidly-rotating Wolf -Rayet star is located at the heart of the system, implicating Apep as a Galactic progenitor system to long-duration gamma-ray bursts. One of the difficulties in interpreting the dynamics of Apep is that the spectral composition of the stars in the system was unclear. Here we present visual to near-infrared spectra that demonstrate that the central component of Apep is composed of two classical Wolf-Rayet stars of carbon- (WC8) and nitrogen-sequence (WN4-6b) subtypes. We argue that such an assignment represents the strongest case of a classical WR+WR binary system in the Milky Way. The terminal line-of-sight wind velocities of the WC8 and WN4-6b stars are measured to be $2100 pm 200$ and $3500 pm 100$ km s$^{-1}$, respectively. If the mass-loss rate of the two stars are typical for their spectral class, the momentum ratio of the colliding winds is expected to be $approx$ 0.4. Since the expansion velocity of the dust plume is significantly smaller than either of the measured terminal velocities, we explore the suggestion that one of the Wolf-Rayet winds is anisotropic. We can recover a shock-compressed wind velocity consistent with the observed dust expansion velocity if the WC8 star produces a significantly slow equatorial wind with a velocity of $approx$530 km s$^{-1}$. Such slow wind speeds can be driven by near-critical rotation of a Wolf-Rayet star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا