ترغب بنشر مسار تعليمي؟ اضغط هنا

WR 143: A Wolf-Rayet Binary

81   0   0.0 ( 0 )
 نشر من قبل Watson Varricatt P.
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Near infrared spectroscopy and photometry of the Wolf-Rayet Star WR 143 (HD 195177) were obtained in the $JHK$ photometric bands. High resolution spectra observed in the J and H bands exhibit narrow 1.083-micron He I line and the H I Pa Beta and the Brackett series lines in emission superposed on the broad emission line spectrum of the Wolf-Rayet star, giving strong indications of the presence of a companion. From the narrow emission lines observed, the companion is identified to be an early-type Be star. The photometric magnitudes exhibit variations in the JHK bands which are probably due to the variability of the companion star. The flux density distribution is too steep for a Wolf-Rayet atmosphere. This is identified to be mainly due to the increasing contribution from the early-type companion star towards shorter wavelengths.

قيم البحث

اقرأ أيضاً

73 - A. Collado 2015
Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of th eir components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {lambda}4686 emission line shows variations with the orbital phase, presenting a minimum when the WN star is in front of the system. The light curve constructed from available photometric data presents minima in both conjunctions of the system
WR 125 is considered as a Colliding Wind Wolf-rayet Binary (CWWB), from which the most recent infrared flux increase was reported between 1990 and 1993. We observed the object four times from November 2016 to May 2017 with Swift and XMM-Newton, and c arried out a precise X-ray spectral study for the first time. There were hardly any changes of the fluxes and spectral shapes for half a year, and the absorption-corrected luminosity was 3.0e+33 erg/s in the 0.5 - 10.0 keV range at a distance of 4.1 kpc. The hydrogen column density was higher than that expected from the interstellar absorption, thus the X-ray spectra were probably absorbed by the WR wind. The energy spectrum was successfully modeled by a collisional equilibrium plasma emission, where both the plasma and the absorbing wind have unusual elemental abundances particular to the WR stars. In 1981, the Einstein satellite clearly detected X-rays from WR 125, whereas the ROSAT satellite hardly detected X-rays in 1991, when the binary was probably around the periastron passage. We discuss possible causes for the unexpectedly low soft X-ray flux near the periastron.
We present high spatial resolution mid-infrared images of the nebula around the late-type carbon-rich Wolf-Rayet (WC)-OB binary system WR~112 taken by the recently upgraded VLT spectrometer and imager for the mid-infrared (VISIR) with the PAH1, NeII_ 2, and Q3 filters. The observations reveal a morphology resembling a series of arc-like filaments and broken shells. Dust temperatures and masses are derived for each of the identified filamentary structures, which exhibit temperatures ranging from $179_{-6}^{+8}$ K at the exterior W2 filament to $355_{-25}^{+37}$ K in the central 3. The total dust mass summed over the features is $2.6pm0.4times10^{-5}$ $mathrm{M}_odot$. A multi-epoch analysis of mid-IR photometry of WR~112 over the past $sim20$ yr reveals no significant variability in the observed dust temperature and mass. The morphology of the mid-IR dust emission from WR~112 also exhibits no significant expansion from imaging data taken in 2001, 2007, and 2016, which disputes the current interpretation of the nebula as a high expansion velocity ($sim1200$ km s$^{-1}$) pinwheel-shaped outflow driven by the central WC-OB colliding-wind binary. An upper limit of $lesssim120$ km s$^{-1}$ is derived for the expansion velocity assuming a distance of $4.15$ kpc. The upper limit on the average total mass-loss rate from the central 3 of WR~112 is estimated to be $lesssim8times10^{-6}$ $mathrm{M}_odot$ yr$^{-1}$. We leave its true nature as an open question, but propose that the WR~112 nebula may have formed in the outflow during a previous red or yellow supergiant phase of the central Wolf-Rayet star.
With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden li nes places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.
76 - A.-N. Chene 2011
A 30-day contiguous photometric run with the MOST satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 +/- 0.55 days along with a number of harmonics at periods P/n, with n ~ 2,3,4,5 and 6, and a few other pos sible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic RV studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~ 0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base of, a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~ two thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا