ترغب بنشر مسار تعليمي؟ اضغط هنا

Wolf-Rayet and O Star Runaway Populations from Supernovae

58   0   0.0 ( 0 )
 نشر من قبل Lynnette Dray
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. M. Dray




اسأل ChatGPT حول البحث

We present numerical simulations of the runaway fractions expected amongst O and Wolf-Rayet star populations resulting from stars ejected from binaries by the supernova of the companion. Observationally the runaway fraction for both types of star is similar, prompting the explanation that close dynamical interactions are the main cause of these high-velocity stars. We show that, provided that the initial binary fraction is high, a scenario in which two-thirds of massive runaways are from supernovae is consistent with these observations. Our models also predict a low frequency of runaways with neutron star companions and a very low fraction of observable Wolf-Rayet--compact companion systems.



قيم البحث

اقرأ أيضاً

102 - M.Cantiello , S.-C.Yoon , N.Langer 2007
The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically homogeneous evolution; the latter had previously been shown to provide collapsars below a certain metallicity threshold for single stars. The binary channel presented here may provide a means for massive stars to obtain the high rotation rates required to evolve quasi-chemically homogeneous and fulfill the collapsar scenario. Moreover, it suggests that a possibly large fraction of long gamma-ray bursts occurs in runaway stars.
94 - D. M.-A. Meyer 2020
Wolf-Rayet stars are advanced evolutionary stages of massive stars. Despite their large mass-loss rates and high wind velocities, none of them display a bow shock, although a fraction of them are classified as runaway. Our 2.5-D numerical simulations of circumstellar matter around a 60Mo runaway star show that the fast Wolf-Rayet stellar wind is released into a wind-blown cavity filled with various shocks and discontinuities generated throughout the precedent evolutionary phases. The resulting fast-wind slow-wind interaction leads to the formation of spherical shells of swept-up dusty material similar to those observed in near infrared 24 micron with Spitzer, and which appear to be co-moving with the runaway massive stars, regardless of their proper motion and/or the properties of the local ambient medium. We interpret bright infrared rings around runaway Wolf-Rayet stars in the Galactic plane, like WR138a, as indication of their very high initial masses and a complex evolutionary history. Stellar-wind bow shocks become faint as stars run in diluted media, therefore, our results explain the absence of detected bow shocks around Galactic Wolf-Rayet stars such as the high-latitude, very fast-moving objects WR71, WR124 and WR148. Our results show that the absence of a bow shock is consistent with a runaway nature of some Wolf-Rayet stars. This questions the in-situ star formation scenario of high-latitude Wolf-Rayet stars in favor of dynamical ejection from birth sites in the Galactic plane.
Despite the many successes that modern massive star evolutionary theory has enjoyed, reproducing the apparent trend in the relative number of red supergiants (RSGs) and Wolf-Rayet (WR) stars has remained elusive. Previous estimates show the RSG/WR ra tio decreasing strongly with increasing metallicity. However, the evolutionary models have always predicted a relatively flat distribution for the RSG/WR ratio. In this paper we reexamine this issue, drawing on recent surveys for RSGs and WRs in the Magellanic Clouds, M31, and M33. The RSG surveys have used Gaia astrometry to eliminate foreground contamination, and have separated RSGs from asymptotic giant branch stars using near-infrared colors. The surveys for WRs have utilized interference filter imaging, photometry, and image subtraction techniques to identify candidates, which have then been confirmed spectroscopically. After carefully matching the observational criteria to the models, we now find good agreement in both the single-star Geneva and binary BPASS models with the new observations. The agreement is better when we shift the RSG effective temperatures derived from J-Ks photometry downwards by 200 K in order to agree with the Levesque TiO effective temperature scale. In an appendix we also present a source list of RSGs for the SMC which includes effective temperatures and luminosities derived from near-infrared 2MASS photometry, in the same manner as used for the other galaxies.
287 - A. Pasquali 2002
We report the discovery of a new Wolf-Rayet star in the direction of Cygnus. The star is strongly reddened but quite bright in the infrared, with J = 9.22, H = 8.08 and K = 7.09 (2MASS). On the basis of its H + K spectrum, we have classified WR 142a a WC8 star. We have estimated its properties using as a reference those of other WC8 stars in the solar neighbourhood as well as those of WR 135, whose near-infrared spectrum is remarkably similar. We thus obtain a foreground reddening of A(V) = 8.1 mag, M(J) = -4.3, log(L/Lo) = 5.0 - 5.2, R = 0.8 Ro, T = 125,000 K, M = 7.9 - 9.7 Mo, and a mass loss of (1.4 - 2.3)e-05 Mo/yr. The derived distance modulus, DM = 11.2 +/- 0.7 mag, places it in a region occupied by several OB associations in the Cygnus arm, and particularly in the outskirts of both Cygnus OB2 and Cygnus OB9. The position in the sky alone does not allow us to unambiguously assign the star to either association, but based on the much richer massive star content of Cygnus OB2 membership in this latter association appears to be more likely.
We present the main results of the PhD Thesis carried out by Lopez-Sanchez (2006), in which a detailed morphological, photometrical and spectroscopical analysis of a sample of 20 Wolf-Rayet (WR) galaxies was realized. The main aims are the study of t he star formation and O and WR stellar populations in these galaxies and the role that interactions between low surface companion objects have in the triggering of the bursts. We analyze the morphology, stellar populations, physical conditions, chemical abundances and kinematics of the ionized gas, as well as the star-formation activity of each system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا