ترغب بنشر مسار تعليمي؟ اضغط هنا

On the ring nebulae around runaway Wolf-Rayet stars

95   0   0.0 ( 0 )
 نشر من قبل Dominique Meyer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. M.-A. Meyer




اسأل ChatGPT حول البحث

Wolf-Rayet stars are advanced evolutionary stages of massive stars. Despite their large mass-loss rates and high wind velocities, none of them display a bow shock, although a fraction of them are classified as runaway. Our 2.5-D numerical simulations of circumstellar matter around a 60Mo runaway star show that the fast Wolf-Rayet stellar wind is released into a wind-blown cavity filled with various shocks and discontinuities generated throughout the precedent evolutionary phases. The resulting fast-wind slow-wind interaction leads to the formation of spherical shells of swept-up dusty material similar to those observed in near infrared 24 micron with Spitzer, and which appear to be co-moving with the runaway massive stars, regardless of their proper motion and/or the properties of the local ambient medium. We interpret bright infrared rings around runaway Wolf-Rayet stars in the Galactic plane, like WR138a, as indication of their very high initial masses and a complex evolutionary history. Stellar-wind bow shocks become faint as stars run in diluted media, therefore, our results explain the absence of detected bow shocks around Galactic Wolf-Rayet stars such as the high-latitude, very fast-moving objects WR71, WR124 and WR148. Our results show that the absence of a bow shock is consistent with a runaway nature of some Wolf-Rayet stars. This questions the in-situ star formation scenario of high-latitude Wolf-Rayet stars in favor of dynamical ejection from birth sites in the Galactic plane.


قيم البحث

اقرأ أيضاً

Wolf-Rayet stars are amongst the rarest but also most intriguing massive stars. Their extreme stellar winds induce famous multi-wavelength circumstellar gas nebulae of various morphologies, spanning from circles and rings to bipolar shapes. This stud y is devoted to the investigation of the formation of young, asymmetric Wolf-Rayet gas nebulae and we present a 2.5-dimensional magneto-hydrodynamical toy model for the simulation of Wolf-Rayet gas nebulae generated by wind-wind interaction. Our method accounts for stellar wind asymmetries, rotation, magnetisation, evolution and mixing of materials. It is found that the morphology of the Wolf-Rayet nebulae of blue supergiant ancestors is tightly related to the wind geometry and to the stellar phase transition time interval, generating either a broadened peanut-like or a collimated jet-like gas nebula. Radiative transfer calculations of our Wolf-Rayet nebulae for dust infrared emission at 24 $mu$m show that the projected diffuse emission can appear as oblate, bipolar, ellipsoidal or ring structures. Important projection effects are at work in shaping observed Wolf-Rayet nebulae. This might call a revision of the various classifications of Wolf-Rayet shells, which are mostly based on their observed shape. Particularly, our models question the possibility of producing pre-Wolf-Rayet wind asymmetries, responsible for bipolar nebulae like NGC 6888, within the single red supergiant evolution channel scenario. We propose that bipolar Wolf-Rayet nebulae can only be formed within the red supergiant scenario by multiple/merged massive stellar systems, or by single high-mass stars undergoing additional, e.g. blue supergiant, evolutionary stages prior to the Wolf-Rayet phase.
80 - A. Danehkar 2021
The majority of planetary nebulae (PNe) show axisymmetric morphologies, whose causes are not well understood. In this work, we present spatially resolved kinematic observations of 14 Galactic PNe surrounding Wolf-Rayet ([WR]) and weak emission-line s tars ($wels$) based on the H$alpha$ and [N II] emission taken with the Wide Field Spectrograph on the ANU 2.3-m telescope. Velocity-resolved channel maps and position--velocity diagrams, together with archival Hubble Space Telescope ($HST$) and ground-based images, are employed to construct three-dimensional morpho-kinematic models of 12 objects using the program SHAPE. Our results indicate that these 12 PNe have elliptical morphologies with either open or closed outer ends. Kinematic maps also illustrate on-sky orientations of elliptically symmetric morphologies of the interior shells in NGC 6578 and NGC 6629, and the compact ($leq 6$ arcsec) PNe Pe1-1, M3-15, M1-25, Hen2-142, and NGC 6567, in agreement with the high-resolution $HST$ images containing morphological details. Point-symmetric knots in Hb4 exhibit deceleration with distance from the nebular center that could be due to shock collisions with the ambient medium. Velocity dispersion maps of Pe1-1 disclose point-symmetric knots similar to those in Hb4. Collimated outflows are also visible in the position--velocity diagrams of M3-30, M1-32, M3-15, and K2-16, which are reconstructed by tenuous prolate ellipsoids extending upwardly from thick toroidal shells in our models.
84 - Jorick S. Vink 2015
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn int o an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
86 - A. Danehkar 2021
Wolf-Rayet ([WR]) and weak emission-line ($wels$) central stars of planetary nebulae (PNe) have hydrogen-deficient atmospheres, whose origins are not well understood. In the present study, we have conducted plasma diagnostics and abundance analyses o f 18 Galactic PNe surrounding [WR] and $wels$ nuclei, using collisionally excited lines (CELs) and optical recombination lines (ORLs) measured with the Wide Field Spectrograph on the ANU 2.3-m telescope at the Siding Spring Observatory complemented with optical archival data. Our plasma diagnostics imply that the electron densities and temperatures derived from CELs are correlated with the intrinsic nebular H$beta$ surface brightness and excitation class, respectively. Self-consistent plasma diagnostics of heavy element ORLs of N${}^{2+}$ and O${}^{2+}$ suggest that a small fraction of cool ($lesssim 7000$ K), dense ($sim 10^4-10^5$ cm$^{-3}$) materials may be present in some objects, though with large uncertainties. Our abundance analyses indicate that the abundance discrepancy factors (ADF$equiv$ORLs/CELs) of O${}^{2+}$ are correlated with the dichotomies between forbidden-line and He I temperatures. Our results likely point to the presence of a tiny fraction of cool, oxygen-rich dense clumps within the diffuse warm ionized nebulae. Moreover, our elemental abundances derived from CELs are mostly consistent with AGB models in the range of initial masses from 1.5 to 5M$_{odot}$. Further studies are necessary to understand better the origins of abundance discrepancies in PNe around [WR] and $wels$ stars.
We present the analysis of the planetary nebula (PN) NGC 2371 around the [Wolf-Rayet] ([WR]) star WD 0722$+$295. Our Isaac Newton Telescope (INT) Intermediate Dispersion Spectrograph (IDS) spectra, in conjunction with archival optical and UV images, unveil in unprecedented detail the high-ionisation of NGC 2371. The nebula has an apparent multipolar morphology, with two pairs of lobes protruding from a barrel-like central cavity, a pair of dense low-ionisation knots misaligned with the symmetry axis embedded within the central cavity, and a high excitation halo mainly detected in He II. The abundances from the barrel-like central cavity and dense knots agree with abundance determinations for other PNe with [WR]-type CSPNe. We suggest that the densest knots inside NGC 2371 are the oldest structures, remnant of a dense equatorial structure, whilst the main nebular shell and outer lobes resulted from a latter ejection that ended the stellar evolution. The analysis of position-velocity diagrams produced from our high-quality spectra suggests that NGC 2371 has a bipolar shape with each lobe presenting a double-structure protruding from a barrel-like central region. The analysis of the spectra of WD 0722$+$295 results in similar stellar parameters as previously reported. We corroborate that the spectral sub-type corresponds with a [WO1] type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا