ﻻ يوجد ملخص باللغة العربية
The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that the microscopic self-consistent approach, based on global effective interactions, can describe not only general features of transitions between spherical and deformed nuclei, but also the singular properties of excitation spectra and transition rates at the critical point of quantum shape phase transition.
The analysis of shape transitions in Nd isotopes, based on the framework of relativistic energy density functionals and restricted to axially symmetric shapes in Ref. cite{PRL99}, is extended to the region $Z = 60$, 62, 64 with $N approx 90$, and inc
A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfac
Based on the results of a previous paper (Paper I), by performing the geometrical mapping via coherent states, phase transitions are investigated and compared within two algebraic cluster models. The difference between the Semimicroscopic Algebraic C
We present first-principle predictions for the liquid-gas phase transition in symmetric nuclear matter employing both two- and three-nucleon chiral interactions. Our discussion focuses on the sources of systematic errors in microscopic quantum many b
The past two decades have witnessed tremendous progress in the microscopic description of atomic nuclei. The Topical Review `The Future of Nuclear Structure aims at summarizing the current state-of-the-art microscopic calculations in Nuclear Theory a