ﻻ يوجد ملخص باللغة العربية
Based on the results of a previous paper (Paper I), by performing the geometrical mapping via coherent states, phase transitions are investigated and compared within two algebraic cluster models. The difference between the Semimicroscopic Algebraic Cluster Model (SACM) and the Phenomenological Algebraic Cluster Model (PACM) is that the former strictly observes the Pauli exclusion principle between the nucleons of the individual clusters, while the latter ignores it. From the technical point of view the SACM is more involved mathematically, while the formalism of the PACM is closer to that of other algebraic models with different physical content. First- and second-order phase transitions are identified in both models, while in the SACM a critical line also appears. Analytical results are complemented with numerical studies on {alpha}-cluster states of the neon-20 and magnesium-24 nuclei.
The geometrical mapping of algebraic nuclear cluster models is investigated within the coherent state formalism. Two models are considered: the Semimicroscopic Algebraic Cluster Model (SACM) and the Phenomenological Algebraic Cluster Model (PACM), wh
The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that
A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfac
The analysis of shape transitions in Nd isotopes, based on the framework of relativistic energy density functionals and restricted to axially symmetric shapes in Ref. cite{PRL99}, is extended to the region $Z = 60$, 62, 64 with $N approx 90$, and inc
We study the paradigmatic model of a qubit interacting with a structured environment and driven by an external field by means of a microscopic and a phenomenological model. The validity of the so-called fixed-dissipator (FD) assumption, where the dis