ﻻ يوجد ملخص باللغة العربية
We present first-principle predictions for the liquid-gas phase transition in symmetric nuclear matter employing both two- and three-nucleon chiral interactions. Our discussion focuses on the sources of systematic errors in microscopic quantum many body predictions. On the one hand, we test uncertainties of our results arising from changes in the construction of chiral Hamiltonians. We use five different chiral forces with consistently derived three-nucleon interactions. On the other hand, we compare the ladder resummation in the self-consistent Greens functions approach to finite temperature Brueckner--Hartree--Fock calculations. We find that systematics due to Hamiltonians dominate over many-body uncertainties. Based on this wide pool of calculations, we estimate that the critical temperature is $T_c=16 pm 2$ MeV, in reasonable agreement with experimental results. We also find that there is a strong correlation between the critical temperature and the saturation energy in microscopic many-body simulations.
The machine-learning techniques have shown their capability for studying phase transitions in condensed matter physics. Here, we employ the machine-learning techniques to study the nuclear liquid-gas phase transition. We adopt an unsupervised learnin
We study an effective relativistic mean-field model of nuclear matter with arbitrary proton fraction at finite temperature in the framework of nonextensive statistical mechanics, characterized by power-law quantum distributions. We investigate the pr
The existence of a liquid-gas phase transition for hot nuclear systems at subsaturation densities is a well established prediction of finite temperature nuclear many-body theory. In this paper, we discuss for the first time the properties of such pha
Reactions of nuclear multifragmentation of excited finite nuclei can be interpreted as manifestation of the nuclear liquid-gas phase transition. During this process the matter at subnuclear density clusterizes into hot primary fragments, which are lo
Nuclear liquid-gas phase transitions are investigated in the framework of static antisymmetrized molecular dynamics (static AMD) model under either a constant volume or a constant pressure. A deuteron quadrupole momentum fluctuation thermometer is ap