ﻻ يوجد ملخص باللغة العربية
We show that an intermediate scale supersymmetric left-right seesaw scenario with automatic R-parity conservation can cure the problem of tachyonic slepton masses that arises when supersymmetry is broken by anomaly mediation, while preserving ultraviolet insensitivity. The reason for this is the existence of light B - L = 2 higgses with yukawa couplings to the charged leptons. We find these theories to have distinct predictions compared to the usual mSUGRA and gauge mediated models as well as the minimal AMSB models. Such predictions include a condensed gaugino mass spectrum and possibly a correspondingly condensed sfermion spectrum.
Superconformal anomalies provide an elegant and economical way to understand the soft breaking parameters in SUSY models; however, implementing them leads to the several undesirable features including: tachyonic sleptons and electroweak symmetry brea
The long-standing muon $g-2$ anomaly has been confirmed recently at the Fermilab. The combined discrepancy from Fermilab and Brookhaven results shows a difference from the theory at a significance of 4.2 $sigma$. In addition, the LHC has updated the
We explore realizations of minimal flavor violation (MFV) for leptons in the simplest seesaw models where the neutrino mass generation mechanism is driven by new fermion singlets (type I) or triplets (type III) and by a scalar triplet (type II). We a
We explore realizations of minimal flavour violation (MFV) for the lepton sector. We find that it can be realized within those seesaw models where a separation of the lepton number and lepton flavour violating scales can be achieved, such as type II
We propose an attractive model that excess of electron recoil events around 1-5 keV reported by the XENON1T collaboration nicely links to the tiny neutrino masses based on a radiative seesaw scenario. Our dark matter(DM) is an isospin singlet inert b