ترغب بنشر مسار تعليمي؟ اضغط هنا

Seesaw Models with Minimal Flavor Violation

139   0   0.0 ( 0 )
 نشر من قبل Jusak Tandean
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore realizations of minimal flavor violation (MFV) for leptons in the simplest seesaw models where the neutrino mass generation mechanism is driven by new fermion singlets (type I) or triplets (type III) and by a scalar triplet (type II). We also discuss similarities and differences of the MFV implementation among the three scenarios. To study the phenomenological implications, we consider a number of effective dimension-six operators that are purely leptonic or couple leptons to the standard-model gauge and Higgs bosons and evaluate constraints on the scale of MFV associated with these operators from the latest experimental information. Specifically, we employ the most recent measurements of neutrino mixing parameters as well as the currently available data on flavor-violating radiative and three-body decays of charged leptons, mu -> e conversion in nuclei, the anomalous magnetic moments of charged leptons, and their electric dipole moments. The most stringent lower-limit on the MFV scale comes from the present experimental bound on mu -> e gamma and can reach 500 TeV or higher, depending on the details of the seesaw scheme. With our numerical results, we illustrate some important differences among the seesaw types. In particular, we show that in types I and III there are features which can bring about potentially remarkable effects which do not occur in type II. In addition, we comment on how one of the new effective operators can induce flavor-changing dilepton decays of the Higgs boson, which may be probed in upcoming searches at the LHC.

قيم البحث

اقرأ أيضاً

We study the phenomenology of simplified $Z^prime$ models with a global $U(2)^3$ flavour symmetry in the quark sector, broken solely by the Standard Model Yukawa couplings. This flavour symmetry, known as less-minimal flavour violation, protects $Del ta F=2$ processes from dangerously large new physics (NP) effects, and at the same time provides a free complex phase in $bto s$ transitions, allowing for an explanation of the hints for additional direct CP violation in kaon decays ($epsilon^prime/epsilon$) and in hadronic $B$-decays ($Bto Kpi$ puzzle). Furthermore, once the couplings of the $Z^prime$ boson to the leptons are included, it is possible to address the intriguing hints for NP (above the 5$,sigma$ level) in $bto s ell^+ell^-$ transitions. Taking into account all flavour observables in a global fit, we find that $epsilon^prime/epsilon$, the $Bto Kpi$ puzzle and $bto s ell^+ell^-$ data can be explained simultaneously. Sizeable CP violation in $bto s ell^+ell^-$ observables, in particular $A_8$, is predicted, which can be tested in the near future, and an explanation of the $Bto Kpi$ and $epsilon^prime/epsilon$ puzzles leads to effects in di-jet tails at the LHC, that are not far below the current limits. Once $bto s ell^+ell^-$ is included, cancellations in di-muon tails, possibly by a second $Z^prime$, are required by LHC data.
We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal $mathcal{Z}_8$ discrete symmetry, broken to a residual $mathcal{Z}_2$ subgroup responsible f or stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed $mathcal{Z}_8$ symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.
We explore realizations of minimal flavour violation (MFV) for the lepton sector. We find that it can be realized within those seesaw models where a separation of the lepton number and lepton flavour violating scales can be achieved, such as type II and inverse seesaw models. We present in particular a simple implementation of the MFV hypothesis which differs in nature from those previously discussed. It allows to reconstruct the flavour structure of the model from the values of the light neutrino masses and mixing parameters, even in the presence of CP-violating phases. Experimentally reachable predictions for rare processes such as mu --> e gamma are given.
The LHC has recently reported a slight excess in the $hrightarrow tau mu$ channel. If this lepton flavor violating (LFV) decay is confirmed, an extension of the Standard Model (SM) will be required to explain it. In this paper we investigate two diff erent possibilities to accommodate such a LFV process: the first scenario is based on flavor off-diagonal $A$-terms in the Minimal Supersymmetric Standard Model (MSSM), and the second is a model where the Higgs couples to new vectorlike fermions that couple to the SM leptons through a LFV four fermion interaction. In the supersymmetric model, we find that the sizes of the $A$-terms needed to accommodate the $hrightarrow taumu$ excess are in conflict with charge- and color-breaking vacuum constraints. In the second model, the excess can be successfully explained while satisfying all other flavor constrains, with order one couplings, vectorlike fermion masses as low as 15 TeV, and a UV scale higher than 35 TeV.
153 - Abdesslam Arhrib 2006
We study the flavor changing neutral current decays of the MSSM Higgs bosons into strange and bottom quarks. We focus on a scenario of minimum flavor violation here, namely only that induced by the CKM matrix. Taking into account constraint from $bto s gamma$, $deltarho$ as well as experimental constraints on the MSSM spectrum, we show that the branching ratio of $(Phito bbar{s})$ and $(Phi to bar{b}s)$ combined, for $Phi$ being either one of the CP even Higgs states, can reach the order $10^{-4}$-$10^{-3}$ for large $tanbeta$, large $mu$, and large $A_t$. The result illustrates the significance of minimal flavor violation scenario which can induce competitive branching fraction for flavor changing Higgs decays. This can be compared with the previous studies where similar branching fraction has been reported, but with additional sources of flavor violations in squark mass matrices. We also discuss some basic features of the flavor violating decays in the generic case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا