ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal Flavour Seesaw Models

111   0   0.0 ( 0 )
 نشر من قبل Daniel Hern\\'andez
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore realizations of minimal flavour violation (MFV) for the lepton sector. We find that it can be realized within those seesaw models where a separation of the lepton number and lepton flavour violating scales can be achieved, such as type II and inverse seesaw models. We present in particular a simple implementation of the MFV hypothesis which differs in nature from those previously discussed. It allows to reconstruct the flavour structure of the model from the values of the light neutrino masses and mixing parameters, even in the presence of CP-violating phases. Experimentally reachable predictions for rare processes such as mu --> e gamma are given.

قيم البحث

اقرأ أيضاً

We explore realizations of minimal flavor violation (MFV) for leptons in the simplest seesaw models where the neutrino mass generation mechanism is driven by new fermion singlets (type I) or triplets (type III) and by a scalar triplet (type II). We a lso discuss similarities and differences of the MFV implementation among the three scenarios. To study the phenomenological implications, we consider a number of effective dimension-six operators that are purely leptonic or couple leptons to the standard-model gauge and Higgs bosons and evaluate constraints on the scale of MFV associated with these operators from the latest experimental information. Specifically, we employ the most recent measurements of neutrino mixing parameters as well as the currently available data on flavor-violating radiative and three-body decays of charged leptons, mu -> e conversion in nuclei, the anomalous magnetic moments of charged leptons, and their electric dipole moments. The most stringent lower-limit on the MFV scale comes from the present experimental bound on mu -> e gamma and can reach 500 TeV or higher, depending on the details of the seesaw scheme. With our numerical results, we illustrate some important differences among the seesaw types. In particular, we show that in types I and III there are features which can bring about potentially remarkable effects which do not occur in type II. In addition, we comment on how one of the new effective operators can induce flavor-changing dilepton decays of the Higgs boson, which may be probed in upcoming searches at the LHC.
163 - E. Arganda , M.J. Herrero 2008
We calculate the predictions for lepton flavour violating (LFV) tau and muon decays, $l_j to l_i gamma$, $l_j to 3 l_i$, $mu-e$ conversion in nuclei and LFV semileptonic tau decays $tau to mu PP$ with $PP= pi^+pi^-, pi^0pi^0, K^+K^-, K^0 {bar K}^0$ $ tau to mu P$ with $P=pi^0, eta, eta$ and $tau to mu V$ with $V = rho^0, phi$, performing the hadronisation of quark bilinears within the chiral framework. We work within a SUSY-seesaw context where the particle content of the Minimal Supersymmetric Standard Model is extended by three right-handed neutrinos plus their corresponding SUSY partners, and where a seesaw mechanism for neutrino mass generation is implemented. Two different scenarios with either universal or non-universal soft supersymmetry breaking Higgs masses at the gauge coupling unification scale are considered. After comparing the predictions with present experimental bounds and future sensitivities, the most promising processes are particularly emphasised.
We study the phenomenology of simplified $Z^prime$ models with a global $U(2)^3$ flavour symmetry in the quark sector, broken solely by the Standard Model Yukawa couplings. This flavour symmetry, known as less-minimal flavour violation, protects $Del ta F=2$ processes from dangerously large new physics (NP) effects, and at the same time provides a free complex phase in $bto s$ transitions, allowing for an explanation of the hints for additional direct CP violation in kaon decays ($epsilon^prime/epsilon$) and in hadronic $B$-decays ($Bto Kpi$ puzzle). Furthermore, once the couplings of the $Z^prime$ boson to the leptons are included, it is possible to address the intriguing hints for NP (above the 5$,sigma$ level) in $bto s ell^+ell^-$ transitions. Taking into account all flavour observables in a global fit, we find that $epsilon^prime/epsilon$, the $Bto Kpi$ puzzle and $bto s ell^+ell^-$ data can be explained simultaneously. Sizeable CP violation in $bto s ell^+ell^-$ observables, in particular $A_8$, is predicted, which can be tested in the near future, and an explanation of the $Bto Kpi$ and $epsilon^prime/epsilon$ puzzles leads to effects in di-jet tails at the LHC, that are not far below the current limits. Once $bto s ell^+ell^-$ is included, cancellations in di-muon tails, possibly by a second $Z^prime$, are required by LHC data.
Motivated by the recent resurrection of the evidence for an eV scale sterile neutrino from the MiniBooNE experiment, we revisit one of the most minimal seesaw model known as the minimal extended seesaw that gives rise to a $3+1$ light neutrino mass m atrix. We consider the presence of $A_4$ flavour symmetry which plays a non-trivial role in generating the structure of the neutrino mass matrix. Considering a diagonal charged lepton mass matrix and generic vacuum alignments of $A_4$ triplet flavons, we classify the resulting mass matrices based on their textures. Keeping aside the disallowed texture zeros based on earlier studies of $3+1$ neutrino textures, we categorise the remaining ones based on texture zeros, $mu-tau$ symmetry in the $3times3$ block and hybrid textures. After pointing out the origin of such $3+1$ neutrino textures to $A_4$ vacuum alignments, we use the latest $3+1$ neutrino oscillation data and numerically analyse the texture zeros and $mu-tau$ symmetric cases. We find that a few of them are allowed from each category predicting interesting correlations between neutrino parameters. We also find that all of these allowed cases prefer normal hierarchical pattern of light neutrino masses over inverted hierarchy.
123 - E. Arganda , M.J. Herrero 2007
Here we update the predictions for lepton flavour violating tau and muon decays, $l_j to l_i gamma$, $l_j to 3 l_i$, and $mu-e$ conversion in nuclei. We work within a SUSY-seesaw context where the particle content of the Minimal Supersymmetric Standa rd Model is extended by three right handed neutrinos plus their corresponding SUSY partners, and where a seesaw mechanism for neutrino mass generation is implemented. Two different scenarios with either universal or non-universal soft supersymmetry breaking Higgs masses at the gauge coupling unification scale are considered. After comparing the predictions with present experimental bounds and future sensitivities, the most promising processes are particularly emphasised.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا