ﻻ يوجد ملخص باللغة العربية
A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose Stanley--Reisner ring has a linear resolution. It turns out that the Stanley--Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres arising naturally from commutative algebra whose Stanley--Reisner rings satisfy the multiplicity conjecture will be presented.
This article has been withdrown by the author.
The MultiplicitySequence package for Macaulay2 computes the multiplicity sequence of a graded ideal in a standard graded ring over a field, as well as several invariants of monomial ideals related to integral dependence. We discuss two strategies imp
We prove a characterization of the j-multiplicity of a monomial ideal as the normalized volume of a polytopal complex. Our result is an extension of Teissiers volume-theoretic interpretation of the Hilbert-Samuel multiplicity for m-primary monomial i
We show that the Hilbert-Kunz multiplicities of the reductions to positive characteristics of an irreducible projective curve in characteristic 0 have a well-defined limit as the characteristic tends to infinity.
We prove upper bounds for the Hilbert-Samuel multiplicity of standard graded Gorenstein algebras. The main tool that we use is Boij-Soderberg theory to obtain a decomposition of the Betti table of a Gorenstein algebra as the sum of rational multiples