ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounds for the Multiplicity of Gorenstein algebras

118   0   0.0 ( 0 )
 نشر من قبل Manoj Kummini
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove upper bounds for the Hilbert-Samuel multiplicity of standard graded Gorenstein algebras. The main tool that we use is Boij-Soderberg theory to obtain a decomposition of the Betti table of a Gorenstein algebra as the sum of rational multiples of symmetrized pure tables. Our bound agrees with the one in the quasi-pure case obtained by Srinivasan [J. Algebra, vol.~208, no.~2, (1998)].



قيم البحث

اقرأ أيضاً

Let $R$ be a polynomial ring over a field and $I subset R$ be a Gorenstein ideal of height three that is minimally generated by homogeneous polynomials of the same degree. We compute the multiplicity of the saturated special fiber ring of $I$. The ob tained formula depends only on the number of variables of $R$, the minimal number of generators of $I$, and the degree of the syzygies of $I$. Applying results from arXiv:1805.05180, we get a formula for the $j$-multiplicity of $I$ and an effective method to study a rational map determined by a minimal set of generators of $I$.
We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the first open case, namely Hilbert function (1,3,6,6,3,1), we give a complete answer in every characteristic by translating the problem to one of studying geometric aspects of certain morphisms from $mathbb P^2$ to $mathbb P^3$, and Hesse configurations in $mathbb P^2$.
Let $R$ be a polynomial ring over a field and $M= bigoplus_n M_n$ a finitely generated graded $R$-module, minimally generated by homogeneous elements of degree zero with a graded $R$-minimal free resolution $mathbf{F}$. A Cohen-Macaulay module $M$ is Gorenstein when the graded resolution is symmetric. We give an upper bound for the first Hilbert coefficient, $e_1$ in terms of the shifts in the graded resolution of $M$. When $M = R/I$, a Gorenstein algebra, this bound agrees with the bound obtained in cite{ES} in Gorenstein algebras with quasi-pure resolution. We conjecture a similar bound for the higher coefficients.
A connected sum construction for local rings was introduced in a paper by H. Ananthnarayan, L. Avramov, and W.F. Moore. In the graded Artinian Gorenstein case, this can be viewed as an algebraic analogue of the topological construction of the same na me. We give two alternative description of this algebraic connected sum: the first uses algebraic analogues of Thom classes of vector bundles and Gysin homomorphisms, the second is in terms of Macaulay dual generators. We also investigate the extent to which the connected sum construction preserves the weak or strong Lefschetz property, thus providing new classes of rings which satisfy these properties.
124 - J. Elias , M. E. Rossi 2021
Let $R$ be the power series ring or the polynomial ring over a field $k$ and let $I $ be an ideal of $R.$ Macaulay proved that the Artinian Gorenstein $k$-algebras $R/I$ are in one-to-one correspondence with the cyclic $R$-submodules of the divided p ower series ring $Gamma. $ The result is effective in the sense that any polynomial of degree $s$ produces an Artinian Gorenstein $k$-algebra of socle degree $s.$ In a recent paper, the authors extended Macaulays correspondence characterizing the $R$-submodules of $Gamma $ in one-to-one correspondence with Gorenstein d-dimensional $k$-algebras. However, these submodules in positive dimension are not finitely generated. Our goal is to give constructive and finite procedures for the construction of Gorenstein $k$-algebras of dimension one and any codimension. This has been achieved through a deep analysis of the $G$-admissible submodules of $Gamma. $ Applications to the Gorenstein linkage of zero-dimensional schemes and to Gorenstein affine semigroup rings are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا