ترغب بنشر مسار تعليمي؟ اضغط هنا

Hilbert-Kunz multiplicity and reduction mod p

130   0   0.0 ( 0 )
 نشر من قبل Vijaylaxmi Trivedi
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English
 تأليف V. Trivedi




اسأل ChatGPT حول البحث

We show that the Hilbert-Kunz multiplicities of the reductions to positive characteristics of an irreducible projective curve in characteristic 0 have a well-defined limit as the characteristic tends to infinity.



قيم البحث

اقرأ أيضاً

89 - V. Trivedi 2015
For a pair $(M, I)$, where $M$ is finitely generated graded module over a standard graded ring $R$ of dimension $d$, and $I$ is a graded ideal with $ell(R/I) < infty$, we introduce a new invariant $HKd(M, I)$ called the {em Hilbert-Kunz density funct ion}. In Theorem 1.1, we relate this to the Hilbert-Kunz multiplicity $e_{HK}(M,I)$ by an integral formula. We prove that the Hilbert-Kunz density function is additive. Moreover it satisfies a multiplicative formula for a Segre product of rings. This gives a formula for $e_{HK}$ of the Segre product of rings in terms of the HKd of the rings involved. As a corollary, $e_{HK}$ of the Segre product of any finite number of Projective curves is a rational number. As an another application we see that $e_{HK}(R, {bf m}^k) - e(R, {bf m}^k)/d!$ grows at least as a fixed positive multiple of $k^{d-1}$ as $kto infty$.
We had shown earlier that for a standard graded ring $R$ and a graded ideal $I$ in characteristic $p>0$, with $ell(R/I) <infty$, there exists a compactly supported continuous function $f_{R, I}$ whose Riemann integral is the HK multiplicity $e_{HK}(R , I)$. We explore further some other invariants, namely the shape of the graph of $f_{R, {bf m}}$ (where ${bf m}$ is the graded maximal ideal of $R$) and the maximum support (denoted as $alpha(R,I)$) of $f_{R, I}$. In case $R$ is a domain of dimension $dgeq 2$, we prove that $(R, {bf m})$ is a regular ring if and only if $f_{R, {bf m}}$ has a symmetry $f_{R, {bf m}}(x) = f_{R, {bf m}}(d-x)$, for all $x$. If $R$ is strongly $F$-regular on the punctured spectrum then we prove that the $F$-threshold $c^I({bf m})$ coincides with $alpha(R,I)$. As a consequence, if $R$ is a two dimensional domain and $I$ is generated by homogeneous elements of the same degree, thene have (1) a formula for the $F$-threshold $c^I({bf m})$ in terms of the minimum strong Harder-Narasimahan slope of the syzygy bundle and (2) a well defined notion of the $F$-threshold $c^I({bf m})$ in characteristic $0$. This characterisation readily computes $c^{I(n)}({bf m})$, for the set of all irreducible plane trinomials $k[x,y,z]/(h)$, where ${bf m} = (x,y,z)$ and $I(n) = (x^n, y^n, z^n)$.
111 - V. Trivedi 2004
We study Hilbert-Kunz multiplicity of non-singular curves in positive characteristic. We analyse the relationship between the Frobenius semistability of the kernel sheaf associated with the curve and its ample line bundle, and the HK multiplicity. Th is leads to a lower bound, achieved iff the kernel sheaf is Frobenius semistable, and otherwise to formulas for the HK multiplicity in terms of parameters measuring the failure of Frobenius semistability. As a byproduct, an explicit example of a vector bundle on a curve is given whose $n$-th iterated Frobenius pullback is not semistable, while its $(n-1)$-th such pullback is semistable, where $n>0$ is arbitrary.
We prove the existence of HK density function for a pair $(R, I)$, where $R$ is a ${mathbb N}$-graded domain of finite type over a perfect field and $Isubset R$ is a graded ideal of finite colength. This generalizes our earlier result where one prove s the existence of such a function for a pair $(R, I)$, where, in addition $R$ is standard graded. As one of the consequences we show that if $G$ is a finite group scheme acting linearly on a polynomial ring $R$ of dimension $d$ then the HK density function $f_{R^G, {bf m}_G}$, of the pair $(R^G, {bf m}_G)$, is a piecewise polynomial function of degree $d-1$. We also compute the HK density functions for $(R^G, {bf m}_G)$, where $Gsubset SL_2(k)$ is a finite group acting linearly on the ring $k[X, Y]$.
91 - Vijaylaxmi Trivedi 2016
For a pair $(R, I)$, where $R$ is a standard graded domain of dimension $d$ over an algebraically closed field of characteristic $0$ and $I$ is a graded ideal of finite colength, we prove that the existence of $lim_{pto infty}e_{HK}(R_p, I_p)$ is equ ivalent, for any fixed $mgeq d-1$, to the existence of $lim_{pto infty}ell(R_p/I_p^{[p^m]})/p^{md}$. This we get as a consequence of Theorem 1.1: As $prightarrow infty $, the convergence of the HK density function $f{(R_p, I_p)}$ is equivalent to the convergence of the truncated HK density functions $f_m(R_p, I_p)$ (in $L^{infty}$ norm) of the {it mod $p$ reductions} $(R_p, I_p)$, for any fixed $mgeq d-1$. In particular, to define the HK density function $f^{infty}(R, I)$ in characteristic 0, it is enough to prove the existence of $lim_{pto infty} f_m(R_p, I_p)$, for any fixed $mgeq d-1$. This allows us to prove the existence of $e_{HK}^{infty}(R, I)$ in many new cases, {em e.g.}, when $mbox{Proj~R}$ is a Segre product of curves, for example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا