ترغب بنشر مسار تعليمي؟ اضغط هنا

Ensemble Learning for Free with Evolutionary Algorithms ?

50   0   0.0 ( 0 )
 نشر من قبل Marc Schoenauer
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Christian Gagne




اسأل ChatGPT حول البحث

Evolutionary Learning proceeds by evolving a population of classifiers, from which it generally returns (with some notable exceptions) the single best-of-run classifier as final result. In the meanwhile, Ensemble Learning, one of the most efficient approaches in supervised Machine Learning for the last decade, proceeds by building a population of diverse classifiers. Ensemble Learning with Evolutionary Computation thus receives increasing attention. The Evolutionary Ensemble Learning (EEL) approach presented in this paper features two contributions. First, a new fitness function, inspired by co-evolution and enforcing the classifier diversity, is presented. Further, a new selection criterion based on the classification margin is proposed. This criterion is used to extract the classifier ensemble from the final population only (Off-line) or incrementally along evolution (On-line). Experiments on a set of benchmark problems show that Off-line outperforms single-hypothesis evolutionary learning and state-of-art Boosting and generates smaller classifier ensembles.

قيم البحث

اقرأ أيضاً

Multivariate time series (MTS) prediction plays a key role in many fields such as finance, energy and transport, where each individual time series corresponds to the data collected from a certain data source, so-called channel. A typical pipeline of building an MTS prediction model (PM) consists of selecting a subset of channels among all available ones, extracting features from the selected channels, and building a PM based on the extracted features, where each component involves certain optimization tasks, i.e., selection of channels, feature extraction (FE) methods, and PMs as well as configuration of the selected FE method and PM. Accordingly, pursuing the best prediction performance corresponds to optimizing the pipeline by solving all of its involved optimization problems. This is a non-trivial task due to the vastness of the solution space. Different from most of the existing works which target at optimizing certain components of the pipeline, we propose a novel evolutionary ensemble learning framework to optimize the entire pipeline in a holistic manner. In this framework, a specific pipeline is encoded as a candidate solution and a multi-objective evolutionary algorithm is applied under different population sizes to produce multiple Pareto optimal sets (POSs). Finally, selective ensemble learning is designed to choose the optimal subset of solutions from the POSs and combine them to yield final prediction by using greedy sequential selection and least square methods. We implement the proposed framework and evaluate our implementation on two real-world applications, i.e., electricity consumption prediction and air quality prediction. The performance comparison with state-of-the-art techniques demonstrates the superiority of the proposed approach.
Although different learning systems are coordinated to afford complex behavior, little is known about how this occurs. This article describes a theoretical framework that specifies how complex behaviors that might be thought to require error-driven l earning might instead be acquired through simple reinforcement. This framework includes specific assumptions about the mechanisms that contribute to the evolution of (artificial) neural networks to generate topologies that allow the networks to learn large-scale complex problems using only information about the quality of their performance. The practical and theoretical implications of the framework are discussed, as are possible biological analogs of the approach.
Among the top approaches of recent years, link prediction using knowledge graph embedding (KGE) models has gained significant attention for knowledge graph completion. Various embedding models have been proposed so far, among which, some recent KGE m odels obtain state-of-the-art performance on link prediction tasks by using embeddings with a high dimension (e.g. 1000) which accelerate the costs of training and evaluation considering the large scale of KGs. In this paper, we propose a simple but effective performance boosting strategy for KGE models by using multiple low dimensions in different repetition rounds of the same model. For example, instead of training a model one time with a large embedding size of 1200, we repeat the training of the model 6 times in parallel with an embedding size of 200 and then combine the 6 separate models for testing while the overall numbers of adjustable parameters are same (6*200=1200) and the total memory footprint remains the same. We show that our approach enables different models to better cope with their expressiveness issues on modeling various graph patterns such as symmetric, 1-n, n-1 and n-n. In order to justify our findings, we conduct experiments on various KGE models. Experimental results on standard benchmark datasets, namely FB15K, FB15K-237 and WN18RR, show that multiple low-dimensional models of the same kind outperform the corresponding single high-dimensional models on link prediction in a certain range and have advantages in training efficiency by using parallel training while the overall numbers of adjustable parameters are same.
We present generalized-ensemble algorithms for isobaric-isothermal molecular simulations. In addition to the multibaric-multithermal algorithm and replica-exchange method for the isobaric-isothermal ensemble, which have already been proposed, we prop ose a simulated tempering method for this ensemble. We performed molecular dynamics simulations with these algorithms for an alanine dipeptide system in explicit water molecules to test the effectiveness of the algorithms. We found that these generalized-ensemble algorithms are all useful for conformational sampling of biomolecular systems in the isobaric-isothermal ensemble.
We review uses of the generalized-ensemble algorithms for free-energy calculations in protein folding. Two of the well-known methods are multicanonical algorithm and replica-exchange method; the latter is also referred to as parallel tempering. We pr esent a new generalized-ensemble algorithm that combines the merits of the two methods; it is referred to as the replica-exchange multicanonical algorithm. We also give a multidimensional extension of the replica-exchange method. Its realization as an umbrella sampling method, which we refer to as the replica-exchange umbrella sampling, is a powerful algorithm that can give free energy in wide reaction coordinate space.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا