ﻻ يوجد ملخص باللغة العربية
Although different learning systems are coordinated to afford complex behavior, little is known about how this occurs. This article describes a theoretical framework that specifies how complex behaviors that might be thought to require error-driven learning might instead be acquired through simple reinforcement. This framework includes specific assumptions about the mechanisms that contribute to the evolution of (artificial) neural networks to generate topologies that allow the networks to learn large-scale complex problems using only information about the quality of their performance. The practical and theoretical implications of the framework are discussed, as are possible biological analogs of the approach.
Many real-world applications involve teams of agents that have to coordinate their actions to reach a common goal against potential adversaries. This paper focuses on zero-sum games where a team of players faces an opponent, as is the case, for examp
AI systems are increasingly applied to complex tasks that involve interaction with humans. During training, such systems are potentially dangerous, as they havent yet learned to avoid actions that could cause serious harm. How can an AI system explor
Psychlab is a simulated psychology laboratory inside the first-person 3D game world of DeepMind Lab (Beattie et al. 2016). Psychlab enables implementations of classical laboratory psychological experiments so that they work with both human and artifi
We introduce ES-ENAS, a simple yet general evolutionary joint optimization procedure by combining continuous optimization via Evolutionary Strategies (ES) and combinatorial optimization via Efficient NAS (ENAS) in a highly scalable and intuitive way.
In this paper we propose a novel method for learning how algorithms perform. Classically, algorithms are compared on a finite number of existing (or newly simulated) benchmark datasets based on some fixed metrics. The algorithm(s) with the smallest v