ترغب بنشر مسار تعليمي؟ اضغط هنا

Bragg spectroscopy of a superfluid Bose-Hubbard gas

153   0   0.0 ( 0 )
 نشر من قبل Daniel Heinzen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubbard model. For fixed wavevector, the resonant frequency of the excitation is found to decrease with increasing lattice depth. A numerical calculation of the resonant frequencies based on Bogoliubov theory shows a less steep rate of decrease than the measurements.



قيم البحث

اقرأ أيضاً

We study Bragg spectroscopy of a strongly interacting Bose-Einstein condensate using time-dependent Hartree-Fock-Bogoliubov theory. We include approximatively the effect of the momentum dependent scattering amplitude which is shown to be the dominant factor in determining the spectrum for large momentum Bragg scattering. The condensation of the Bragg scattered atoms is shown to significantly alter the observed excitation spectrum by creating a novel pairing channel of mobile pairs.
We present a comprehensive study of the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover in fermionic $^6$Li using Bragg spectroscopy. A smooth transition from molecular to atomic spectra is observed with a clear signature of pairing at and above unitarity. These spectra probe the dynamic and static structure factors of the gas and provide a direct link to two-body correlations. We have characterised these correlations and measured their density dependence across the broad Feshbach resonance at 834 G.
279 - B. Deh , C. Marzok , S. Slama 2008
We report on the observation of Bragg scattering of an ultracold Fermi gas of 6Li atoms at a dynamic optical potential. The momentum states produced in this way oscillate in the trap for time scales on the order of seconds, nearly unperturbed by coll isions, which are absent for ultracold fermions due to the Pauli principle. In contrast, interactions in a mixture with 87Rb atoms lead to rapid damping. The coherence of these states is demonstrated by Ramsey-type matter wave interferometry. The signal is improved using an echo pulse sequence, allowing us to observe coherence times longer than 100 mus. Finally we use Bragg spectroscopy to measure the in-situ momentum distribution of the 6Li cloud. Signatures for the degeneracy of the Fermi gas can be observed directly from the momentum distribution of the atoms inside the trap.
232 - P. Clade , C. Ryu , A. Ramanathan 2008
We present experimental results on a Bose gas in a quasi-2D geometry near the Berezinskii, Kosterlitz and Thouless (BKT) transition temperature. By measuring the density profile, textit{in situ} and after time of flight, and the coherence length, we identify different states of the gas. In particular, we observe that the gas develops a bimodal distribution without long range order. In this state, the gas presents a longer coherence length than the thermal cloud; it is quasi-condensed but is not superfluid. Experimental evidence indicates that we observe the superfluid transition (BKT transition).
68 - Y. Ohashi , M. Kitaura , 2005
We investigate a strongly-correlated Bose gas in an optical lattice. Extending the standard-basis operator method developed by Haley and Erdos to a boson Hubbard model, we calculate excitation spectra in the superfluid phase, as well as in the Mott i nsulating phase, at T=0. In the Mott phase, the excitation spectrum has a finite energy gap, reflecting the localized character of atoms. In the superfluid phase, the excitation spectrum is shown to have an itinerant-localized dual structure, where the gapless Bogoliubov mode (which describes the itinerant character of superfluid atoms) and a band with a finite energy gap coexist. We also show that the rf-tunneling current measurement would give a useful information about the duality of a strongly-correlated superfluid Bose gas near the superfluid-insulator transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا