ترغب بنشر مسار تعليمي؟ اضغط هنا

Bragg spectroscopy of a strongly interacting Bose-Einstein condensate

149   0   0.0 ( 0 )
 نشر من قبل Jami Kinnunen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Bragg spectroscopy of a strongly interacting Bose-Einstein condensate using time-dependent Hartree-Fock-Bogoliubov theory. We include approximatively the effect of the momentum dependent scattering amplitude which is shown to be the dominant factor in determining the spectrum for large momentum Bragg scattering. The condensation of the Bragg scattered atoms is shown to significantly alter the observed excitation spectrum by creating a novel pairing channel of mobile pairs.

قيم البحث

اقرأ أيضاً

We present a comprehensive study of the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover in fermionic $^6$Li using Bragg spectroscopy. A smooth transition from molecular to atomic spectra is observed with a clear signature of pairing at and above unitarity. These spectra probe the dynamic and static structure factors of the gas and provide a direct link to two-body correlations. We have characterised these correlations and measured their density dependence across the broad Feshbach resonance at 834 G.
The use of off-resonant standing light waves to manipulate ultracold atoms is investigated. Previous work has illustrated that optical pulses can provide efficient beam-splitting and reflection operations for atomic wave packets. The performance of t hese operations is characterized experimentally using Bose-Einstein condensates confined in a weak magnetic trap. Under optimum conditions, fidelities of up to 0.99 for beam splitting and 0.98 for reflection are observed, and splitting operations of up to third order are achieved. The dependence of the operations on light intensity and atomic velocity is measured and found to agree well with theoretical estimates.
We demonstrate the operation of an atom interferometer based on a weakly interacting Bose-Einstein condensate. We strongly reduce the interaction induced decoherence that usually limits interferometers based on trapped condensates by tuning the s-wav e scattering length almost to zero via a magnetic Feshbach resonance. We employ a $^{39}$K condensate trapped in an optical lattice, where Bloch oscillations are forced by gravity. With a control of the scattering length better that 0.1 $a_0$ we achieve coherence times of several hundreds of ms. The micrometric sizes of the atomic sample make our sensor an ideal candidate for measuring forces with high spatial resolution. Our technique can be in principle extended to other measurement schemes opening new possibilities in the field of trapped atom interferometry.
We present a detailed theoretical analysis of Bragg spectroscopy from a Bose-Einstein condensate at T=0K. We demonstrate that within the linear response regime, both a quantum field theory treatment and a meanfield Gross-Pitaevskii treatment lead to the same value for the mean evolution of the quasiparticle operators. The observable for Bragg spectroscopy experiments, which is the spectral response function of the momentum transferred to the condensate, can therefore be calculated in a meanfield formalism. We analyse the behaviour of this observable by carrying out numerical simulations in axially symmetric three-dimensional cases and in two dimensions. An approximate analytic expression for the observable is obtained and provides a means for identifying the relative importance of three broadening and shift mechanisms (meanfield, Doppler, and finite pulse duration) in different regimes. We show that the suppression of scattering at small values of q observed by Stamper-Kurn et al. [Phys. Rev. Lett. 83, 2876 (1999)] is accounted for by the meanfield treatment, and can be interpreted in terms of the interference of the u and v quasiparticle amplitudes. We also show that, contrary to the assumptions of previous analyses, there is no regime for trapped condensates for which the spectral response function and the dynamic structure factor are equivalent. Our numerical calculations can also be performed outside the linear response regime, and show that at large laser intensities a significant decrease in the shift of the spectral response function can occur due to depletion of the initial condensate.
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole force of a rapidly scanning laser beam. This novel technique is very flexible and should be useful for the study of rotating Bose-Einstein condensates and vortices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا