ترغب بنشر مسار تعليمي؟ اضغط هنا

Itinerant-localized dual character of a strongly-correlated superfluid Bose gas in an optical lattice

69   0   0.0 ( 0 )
 نشر من قبل Yoji Ohashi
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a strongly-correlated Bose gas in an optical lattice. Extending the standard-basis operator method developed by Haley and Erdos to a boson Hubbard model, we calculate excitation spectra in the superfluid phase, as well as in the Mott insulating phase, at T=0. In the Mott phase, the excitation spectrum has a finite energy gap, reflecting the localized character of atoms. In the superfluid phase, the excitation spectrum is shown to have an itinerant-localized dual structure, where the gapless Bogoliubov mode (which describes the itinerant character of superfluid atoms) and a band with a finite energy gap coexist. We also show that the rf-tunneling current measurement would give a useful information about the duality of a strongly-correlated superfluid Bose gas near the superfluid-insulator transition.



قيم البحث

اقرأ أيضاً

We experimentally and theoretically study the peak fraction of a Bose-Einstein condensate loaded into a cubic optical lattice as the lattice potential depth and entropy per particle are varied. This system is well-described by the superfluid regime o f the Bose-Hubbard model, which allows for comparison with mean-field theories and exact quantum Monte Carlo (QMC) simulations. Despite correcting for systematic discrepancies between condensate fraction and peak fraction, we discover that the experiment consistently shows the presence of a condensate at temperatures higher than the critical temperature predicted by QMC simulations. This metastability suggests that turning on the lattice potential is non-adiabatic. To confirm this behavior, we compute the timescales for relaxation in this system, and find that equilibration times are comparable with the known heating rates. The similarity of these timescales implies that turning on the lattice potential adiabatically may be impossible. Our results point to the urgent need for a better theoretical and experimental understanding of the timescales for relaxation and adiabaticity in strongly interacting quantum gases, and the importance of model-independent probes of thermometry in optical lattices.
152 - X. Du , Shoupu Wan , Emek Yesilada 2007
Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubba rd model. For fixed wavevector, the resonant frequency of the excitation is found to decrease with increasing lattice depth. A numerical calculation of the resonant frequencies based on Bogoliubov theory shows a less steep rate of decrease than the measurements.
The speed of sound of a Bose-Einstein condensate in an optical lattice is studied both analytically and numerically in all three dimensions. Our investigation shows that the sound speed depends strongly on the strength of the lattice. In the one-dime nsional case, the speed of sound falls monotonically with increasing lattice strength. The dependence on lattice strength becomes much richer in two and three dimensions. In the two-dimensional case, when the interaction is weak, the sound speed first increases then decreases as the lattice strength increases. For the three dimensional lattice, the sound speed can even oscillate with the lattice strength. These rich behaviors can be understood in terms of compressibility and effective mass. Our analytical results at the limit of weak lattices also offer an interesting perspective to the understanding: they show the lattice component perpendicular to the sound propagation increases the sound speed while the lattice components parallel to the propagation decreases the sound speed. The various dependence of the sound speed on the lattice strength is the result of this competition.
We present a theoretical treatment of the surprisingly large damping observed recently in one-dimensional Bose-Einstein atomic condensates in optical lattices. We show that time-dependent Hartree-Fock-Bogoliubov (HFB) calculations can describe qualit atively the main features of the damping observed over a range of lattice depths. We also derive a formula of the fluctuation-dissipation type for the damping, based on a picture in which the coherent motion of the condensate atoms is disrupted as they try to flow through the random local potential created by the irregular motion of noncondensate atoms. We expect this irregular motion to result from the well-known dynamical instability exhibited by the mean-field theory for these systems. When parameters for the characteristic strength and correlation times of the fluctuations, obtained from the HFB calculations, are substituted in the damping formula, we find very good agreement with the experimentally-observed damping, as long as the lattice is shallow enough for the fraction of atoms in the Mott insulator phase to be negligible. We also include, for completeness, the results of other calculations based on the Gutzwiller ansatz, which appear to work better for the deeper lattices.
80 - Sougato Bose 2006
We show how the remotest sites of a finite lattice can be entangled, with the amount of entanglement exceeding that of a singlet, solely through the dynamics of an ideal Bose gas in a special initial state in the lattice. When additional occupation n umber measurements are made on the intermediate lattice sites, then the amount of entanglement and the length of the lattice separating the entangled sites can be significantly enhanced. The entanglement generated by this dynamical procedure is found to be higher than that for the ground state of an ideal Bose gas in the same lattice. A second dynamical evolution is shown to verify the existence of these entangled states, as well entangle qubits belonging to well separated quantum registers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا