ﻻ يوجد ملخص باللغة العربية
We report on the observation of Bragg scattering of an ultracold Fermi gas of 6Li atoms at a dynamic optical potential. The momentum states produced in this way oscillate in the trap for time scales on the order of seconds, nearly unperturbed by collisions, which are absent for ultracold fermions due to the Pauli principle. In contrast, interactions in a mixture with 87Rb atoms lead to rapid damping. The coherence of these states is demonstrated by Ramsey-type matter wave interferometry. The signal is improved using an echo pulse sequence, allowing us to observe coherence times longer than 100 mus. Finally we use Bragg spectroscopy to measure the in-situ momentum distribution of the 6Li cloud. Signatures for the degeneracy of the Fermi gas can be observed directly from the momentum distribution of the atoms inside the trap.
We report on the first observation of Bragg scattering of an ultracold $^6$Li Fermi gas. We demonstrate a Ramsey-type matter-wave interferometer based on Bragg diffraction and find robust signatures of persistent matter wave coherences using an echo
We present a comprehensive study of the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover in fermionic $^6$Li using Bragg spectroscopy. A smooth transition from molecular to atomic spectra is observed with a clear signature of
We determine the adiabatic phase diagram of a resonantly-coupled system of Fermi atoms and Bose molecules confined in the harmonic trap by using the local density approximation. The adiabatic phase diagram shows the fermionic condensate fraction comp
We report on the realization of a time-domain `Stuckelberg interferometer, which is based on the internal state structure of ultracold Feshbach molecules. Two subsequent passages through a weak avoided crossing between two different orbital angular m
Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubba