قدمنا في هذا العمل حلولا برمجية لمجموعة من المعادلات التفاضلية الجزئية غير الخطية هي معادلة الحمل غير الخطية وغير المتجانسة، وصف معادلات KdV من المرتبة الثالثة وصف معادلات Burgers.
In this work, we present programming solutions for some nonlinear partial differential equations, which are the advection equation, the third-order KdV
equations, and a family of Burgers' equations.
المراجع المستخدمة
Ablowitz M.J and Clarkson P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, 1991.
تركز بحثنا في هذه المقالة على دراسة طريقتي ADM – VIM و استخداميما لحل
بعض النماذج الهامة من المعادلات التفاضلية الجزئية الخطية و غير الخطية مثل (
معادلة كلاين غوردن غير الخطية – معادلة الموجة غير الخطية – معادلة التلغراف
الخطية – معادلة انتشار الح
نقدم في هذا العمل طريقتين عدديتين لإيجاد الحلول العددية لجمل المعادلات غير الخطية. إن الفكرة الأساسية تقوم على مبدأ وجود علاقة بين النهاية الدنيا لدالة و حل جملة المعادلات غير الخطية.
الطريقة الأولى تبحث عن الحل العددي وفق متتالية من متجهات البحث ال
هدف هذا البحث إلى دراسة السلوك التذبذبي و اللاتذبذبي لحلول بعض المعادلات الفرقية
غير الخطية من المرتبة الثانية.
إذ اعتمدت النتائج بشكل أساسي على بعض التعاريف و المفاهيم الأساسية و التهييديات
المتعلقة بمفهوم السلوك التذبذبي, ثم قدمت بعض الأمثلة التطبيقية المناسبة كإثبات
لصحة المبرهنات المطروحة.
سندرس في هذا البحث السلوك المقارب لحلول معادلة تفاضلية غير خطية من المرتبة الثالثة بثابت
لابلاسي في المدى الزمني البعيد و ذلك عن طريق الاستفادة من تعميمات دنان و فرضيات بيكاركوف-ميدفيد مسـتخدمين بـذلك متراجحـة التكامل الشهيرة لبيهاري، آخذين بالحسبان
تم في هذا البحث تقديم طريقة عددية لحل منظومة من المعادلات التفاضلية الجبرية ذات أدلة عالية. تعتمد الطريقة على تقريب دالة الحل بكثيرة حدود شرائحية من الدرجة الثامنة واستخدام خمس نقاط تجميع لإيجاد الحل العددي في كل خطوة. تبين الدراسة أن الطريقة تكون مس