ترغب بنشر مسار تعليمي؟ اضغط هنا

تهدف وضع العلامات للتسلسل إلى التنبؤ بتسلسل غرامة من الملصقات للنص. ومع ذلك، تعوق هذه الصياغة فعالية الأساليب الخاضعة للإشراف بسبب عدم وجود بيانات مشروحة على مستوى الرمز المميز. يتم تفاقم هذا عندما نلتقي مجموعة متنوعة من اللغات. في هذا العمل، نستكشف تسلسل تسلسل متعدد اللغات مع الحد الأدنى من الإشراف باستخدام نموذج موحد واحد لغات متعددة. على وجه التحديد، نقترح شبكة طالب مدرس من المعلمين (MITA)، وهي طريقة لتعلم التعريف الجديدة لتخفيف ندرة البيانات من خلال الاستفادة من البيانات الكبيرة متعددة اللغات غير المسبقة. يعتمد أطر من المعلمين السابقة من المعلمين من التدريب الذاتي على استراتيجيات تدريس جامدة، والتي بالكاد تنتج ملصقات زائفة عالية الجودة للرموز المتتالية والمترابطة. على العكس من ذلك، يسمح Metats بالمعلم بتكييف استراتيجيات الشروح الزائفة في ديناميكيا من خلال تعليقات الطالب على البيانات التي تم إنشاؤها المصممة ذات المسمى الزائفة من كل لغة، وبالتالي تخفيف انتشار الأخطاء من التسميات الزائفة الصاخبة. تجارب واسعة النطاق على كل من مجموعات بيانات تسلسل متعددة اللغات متعددة اللغات متعددة اللغات في العالم، توضح تجريبيا فعالية التيتات.
تعرف مهمة تحويل نص غير قياسي إلى نص قياسي وقابل للقراءة باسم التطبيع المعجمي. تتطلب جميع تطبيقات معالجة اللغة الطبيعية تقريبا (NLP) البيانات النصية في النموذج الطبيعي لإنشاء نماذج محددة ذات جودة عالية. وبالتالي، فقد ثبت التطبيع المعجمي لتحسين أداء ال عديد من مهام معالجة اللغة الطبيعية على وسائل التواصل الاجتماعي. تهدف هذه الدراسة إلى حل مشكلة التطبيع المعجمي من خلال صياغة مهمة التطبيع المعجمية مشكلة وضع علامة تسلسل. تقترح هذه الورقة نهج وضع علامة تسلسل لحل مشكلة التطبيع المعجمي في تركيبة مع تقنية محاذاة الكلمة. الهدف هو استخدام نموذج واحد لتطبيع النص باللغات المختلفة وهي الكرواتية والدنماركية والهولندية والإنجليزية والإندونيسية والإنجليزية والألمانية والإيطالية والصربية والسلوفينية والإسبانية والتركية والتركية والألمانية والألمانية. هذه مهمة مشتركة في عام 2021 ورشة العمل السابعة حول النص الناتج عن المستخدم الصاخب (W-NUT) "" من المتوقع أن يقوم المشاركون بإنشاء نظام / نموذج يقوم بتنفيذ التطبيع المعجمي، وهو ترجمة النصوص غير القانونية في تعادلهم الكنسي، الذين يشتملون على بيانات من أكثر من 12 لغة. يحقق النموذج المتعدد اللغوي المقترح نتيجة ERS الإجمالية من 43.75 بشأن التقييم الجوهري ونتيجة إجمالي درجة المرفقات (LAS) من 63.12 على التقييم الخارجي. علاوة على ذلك، تحقق الطريقة المقترحة أعلى نقاط معدل تخفيض الأخطاء (ERR) من 61.33 من بين المشاركين في المهمة المشتركة. تسلط هذه الدراسة الضوء على آثار استخدام بيانات تدريب إضافية للحصول على نتائج أفضل وكذلك استخدام نموذج لغة مدرب مسبقا تدرب على لغات متعددة بدلا من لغة واحدة فقط.
ثبت أن دمج المعرفة المعجمية في نماذج التعلم العميق قد تكون فعالة للغاية لمهام وضع التسلسل.ومع ذلك، فإن الأمر السابق يعمل عادة صعوبة في التعامل مع المعجم الديناميكي النطاق الذي يسبب غالبا ضوضاء مطابقة مفرطة ومشاكل التحديثات المتكررة.في هذه الورقة، نقت رح Dylex، ونهج تأريك معجم التوصيل لمهام تسلسل التسلسل القائمة على بيرت.بدلا من الاستفادة من تضمين الكلمات في المعجم في الأساليب التقليدية، فإننا نعتمد تضمين العلامات اللاإرادي للكلمة لتجنب إعادة تدريب التمثيل أثناء تحديث المعجم.علاوة على ذلك، فإننا نوظف طريقة تنظيف المعرفة المعلنة المعجمية الفعالة لإعلام الضوضاء المطابقة.وأخيرا، نقدم آلية الانتباه المعرفة القائم على العقيد الحكيمة لضمان استقرار الإطار المقترح.تجارب تجارب عشرة مجموعات من ثلاث مهام تشير إلى أن الإطار المقترح يحقق سوتا جديدة، حتى مع المعجم على نطاق واسع جدا.
تم اقتراح تغييرات مختلفة لإلقاء تحليل التبعية كوسيلة تسلسل وحل المهمة على النحو التالي: (1) مشكلة اختيار الرأس، (II) العثور على تمثيل للأقواس الرمز المميز كسلاسل قوس، أو (3) ربط تسلسل انتقال جزئي من أالمحلل المحلل القائم على الانتقال إلى الكلمات.ومع ذلك، لا يوجد تفاهم ضئيل حول كيفية التصرف هذه الخطية في إعدادات الموارد المنخفضة.هنا، ندرس أولا كفاءة البيانات الخاصة بهم، محاكاة الإعدادات المقيدة بالبيانات من مجموعة متنوعة من Treebanks Result Resource.ثانيا، نختبر ما إذا كانت هذه الاختلافات تظهر في إعدادات الموارد المنخفضة حقا.تظهر النتائج أن ترميزات اختيار الرأس أكثر كفاءة في البيانات وأداء أفضل في إطار مثالي (ذهب)، ولكن هذه الميزة تختفي إلى حد كبير لصالح التنسيقات القوسين عندما يشبه الإعداد قيد التشغيل تكوين الموارد المنخفضة في العالم الحقيقي.
نحن نبحث كيف يمكن تعديل محولات مستوى الجملة في وضع علامات تسلسل فعالة على مستوى الرمز المميز دون أي إشراف مباشر.لا تؤدي الأساليب الموجودة إلى وضع العلامات على التسلسل الصفرية جيدا عند تطبيقها على الهندسة القائمة على المحولات.نظرا لأن المحولات تحتوي ع لى طبقات متعددة من اهتمام ذاتي متعدد الأطراف، فإن المعلومات الواردة في الجملة التي يتم توزيعها بين العديد من الرموز، مما يؤثر سلبا على أداء مستوى الرمز المميز من الصفر.نجد أن وحدة انتباه ناعمة تشجع صراحة على حدة الأوزان الاهتمام يمكن أن تتفوق بشكل كبير على الأساليب الحالية.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا