ترغب بنشر مسار تعليمي؟ اضغط هنا

Dylex: دمج المعجم الديناميكي في بيرت للحصول على وضع التسلسل

DyLex: Incorporating Dynamic Lexicons into BERT for Sequence Labeling

606   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

ثبت أن دمج المعرفة المعجمية في نماذج التعلم العميق قد تكون فعالة للغاية لمهام وضع التسلسل.ومع ذلك، فإن الأمر السابق يعمل عادة صعوبة في التعامل مع المعجم الديناميكي النطاق الذي يسبب غالبا ضوضاء مطابقة مفرطة ومشاكل التحديثات المتكررة.في هذه الورقة، نقترح Dylex، ونهج تأريك معجم التوصيل لمهام تسلسل التسلسل القائمة على بيرت.بدلا من الاستفادة من تضمين الكلمات في المعجم في الأساليب التقليدية، فإننا نعتمد تضمين العلامات اللاإرادي للكلمة لتجنب إعادة تدريب التمثيل أثناء تحديث المعجم.علاوة على ذلك، فإننا نوظف طريقة تنظيف المعرفة المعلنة المعجمية الفعالة لإعلام الضوضاء المطابقة.وأخيرا، نقدم آلية الانتباه المعرفة القائم على العقيد الحكيمة لضمان استقرار الإطار المقترح.تجارب تجارب عشرة مجموعات من ثلاث مهام تشير إلى أن الإطار المقترح يحقق سوتا جديدة، حتى مع المعجم على نطاق واسع جدا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

غالبا ما تكون نماذج اللغة المدربة مسبقا مسبقا (PLMS) باهظة الثمن بشكل أساسي في الاستدلال، مما يجعلها غير عملية في مختلف تطبيقات العالم الحقيقي المحدودة. لمعالجة هذه المشكلة، نقترح مقاربة تخفيض رمزية ديناميكية لتسريع استنتاج PLMS، والتي تسمى Tr-Bert، والتي يمكن أن تتكيف مرونة عدد الطبقة من كل رمزي في الاستدلال لتجنب الحساب الزائد. خصيصا، تقوم Tr-Bert بتصوير عملية تخفيض الرمز المميز كأداة اختيار رمز تخطيط متعدد الخطوات وتعلم تلقائيا استراتيجية الاختيار عبر التعلم التعزيز. تظهر النتائج التجريبية على العديد من مهام NLP المصب أن Tr-Bert قادرة على تسريع بيرتف بمقدار 2-5 مرات لإرضاء متطلبات الأداء المختلفة. علاوة على ذلك، يمكن ل TR-Bert تحقيق أداء أفضل مع حساب أقل في مجموعة من المهام النصية الطويلة لأن تكييف رقم الطبقة على مستوى الرمز المميز يسرع بشكل كبير عملية انتباه الذات في plms. يمكن الحصول على شفرة المصدر وتفاصيل التجربة لهذه الورقة من https://github.com/thunlp/tr-bert.
في السنوات الأخيرة، أثبتت نماذج اللغة المدربة مسبقا (PLM) مثل بيرت فعالة للغاية في مهام NLP المتنوعة مثل استخراج المعلومات وتحليل المعنويات والرد على الأسئلة.تدربت مع نص المجال العام الضخم، هذه النماذج اللغوية المدربة مسبقا تلتقط معلومات النحوية والد لية والجلطة الغنية في النص.ومع ذلك، نظرا للاختلافات بين نص مجال عام ومحدد (E.G.، Wikipedia مقابل ملاحظات عيادة)، قد لا تكون هذه النماذج مثالية للمهام الخاصة بالمجال (على سبيل المثال، استخراج العلاقات السريرية).علاوة على ذلك، قد يتطلب الأمر معرفة طبية إضافية لفهم النص السريري بشكل صحيح.لحل هذه القضايا، في هذا البحث، نقوم بإجراء فحص شامل للتقنيات المختلفة لإضافة المعرفة الطبية إلى نموذج برت مدرب مسبقا لاستخراج العلاقات السريرية.تتفوق أفضل طرازنا على مجموعة بيانات استخراج الحالة الإكلينيكية من أحدث طراز I2B2 / VA 2010.
تعرف مهمة تحويل نص غير قياسي إلى نص قياسي وقابل للقراءة باسم التطبيع المعجمي. تتطلب جميع تطبيقات معالجة اللغة الطبيعية تقريبا (NLP) البيانات النصية في النموذج الطبيعي لإنشاء نماذج محددة ذات جودة عالية. وبالتالي، فقد ثبت التطبيع المعجمي لتحسين أداء ال عديد من مهام معالجة اللغة الطبيعية على وسائل التواصل الاجتماعي. تهدف هذه الدراسة إلى حل مشكلة التطبيع المعجمي من خلال صياغة مهمة التطبيع المعجمية مشكلة وضع علامة تسلسل. تقترح هذه الورقة نهج وضع علامة تسلسل لحل مشكلة التطبيع المعجمي في تركيبة مع تقنية محاذاة الكلمة. الهدف هو استخدام نموذج واحد لتطبيع النص باللغات المختلفة وهي الكرواتية والدنماركية والهولندية والإنجليزية والإندونيسية والإنجليزية والألمانية والإيطالية والصربية والسلوفينية والإسبانية والتركية والتركية والألمانية والألمانية. هذه مهمة مشتركة في عام 2021 ورشة العمل السابعة حول النص الناتج عن المستخدم الصاخب (W-NUT) "" من المتوقع أن يقوم المشاركون بإنشاء نظام / نموذج يقوم بتنفيذ التطبيع المعجمي، وهو ترجمة النصوص غير القانونية في تعادلهم الكنسي، الذين يشتملون على بيانات من أكثر من 12 لغة. يحقق النموذج المتعدد اللغوي المقترح نتيجة ERS الإجمالية من 43.75 بشأن التقييم الجوهري ونتيجة إجمالي درجة المرفقات (LAS) من 63.12 على التقييم الخارجي. علاوة على ذلك، تحقق الطريقة المقترحة أعلى نقاط معدل تخفيض الأخطاء (ERR) من 61.33 من بين المشاركين في المهمة المشتركة. تسلط هذه الدراسة الضوء على آثار استخدام بيانات تدريب إضافية للحصول على نتائج أفضل وكذلك استخدام نموذج لغة مدرب مسبقا تدرب على لغات متعددة بدلا من لغة واحدة فقط.
تم اقتراح تغييرات مختلفة لإلقاء تحليل التبعية كوسيلة تسلسل وحل المهمة على النحو التالي: (1) مشكلة اختيار الرأس، (II) العثور على تمثيل للأقواس الرمز المميز كسلاسل قوس، أو (3) ربط تسلسل انتقال جزئي من أالمحلل المحلل القائم على الانتقال إلى الكلمات.ومع ذلك، لا يوجد تفاهم ضئيل حول كيفية التصرف هذه الخطية في إعدادات الموارد المنخفضة.هنا، ندرس أولا كفاءة البيانات الخاصة بهم، محاكاة الإعدادات المقيدة بالبيانات من مجموعة متنوعة من Treebanks Result Resource.ثانيا، نختبر ما إذا كانت هذه الاختلافات تظهر في إعدادات الموارد المنخفضة حقا.تظهر النتائج أن ترميزات اختيار الرأس أكثر كفاءة في البيانات وأداء أفضل في إطار مثالي (ذهب)، ولكن هذه الميزة تختفي إلى حد كبير لصالح التنسيقات القوسين عندما يشبه الإعداد قيد التشغيل تكوين الموارد المنخفضة في العالم الحقيقي.
في هذه الورقة، نقترح آلية تسريب المعرفة لإدماج معرف المجال إلى محولات اللغة. يعتبر البيانات الخاضعة للإشراف ضعيفا كمصدر رئيسي للاستحواذ على المعرفة. نحن ندرب نماذج اللغة مسبقا لالتقاط المعرفة الملثمين بالتركيز والجوانب ثم قم بضبطها للحصول على أداء أف ضل على مهام المصب. نظرا لعدم وجود مجموعات بيانات متوفرة للجمهور لتصنيف متعدد التسميات للأسئلة الطبية الصينية، زحفنا أسئلة من منتديات السؤال الطبي / الإجابة وشرحتها يدويا باستخدام ثمانية فصول محددة مسبقا: الأشخاص والمنظمات، والأعراض، والسبب، والفحص والمرض، والمعلومات، المكون، والعلاج. أخيرا، ما مجموعه 1814 سؤالا مع 2،340 ملميا. يحتوي كل سؤال على متوسط ​​1.29 ملصقات. استخدمنا موسوعة بايدو الطبية كمورد المعرفة. تم تنفيذ برت محولين وروبرتا لمقارنة الأداء على مجموعات بياناتنا المبنية. أظهرت النتائج التجريبية أن نموذجنا المقترح مع آلية ضخ المعرفة يمكن أن يحقق أداء أفضل، بغض النظر عن متري التقييم بما في ذلك ماكرو F1 أو مايكرو F1 أو الدقة المزدوجة الواردة في الدقة الفرعية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا