ترغب بنشر مسار تعليمي؟ اضغط هنا

هناك حدود مثيرة في فهم اللغة الطبيعية (NLU) وتوليد (NLG) يدعو (NLG) نماذج لغة (Vision-and) التي يمكن أن تصل إلى إمكانية الوصول إلى مستودعات المعرفة المنظم الخارجية بكفاءة. ومع ذلك، فإن العديد من قواعد المعرفة الموجودة تغطي فقط المجالات المحدودة، أو ت عاني من بيانات صاخبة، والأهم من ذلك كلها يصعب دمجها عادة في خطوط أنابيب اللغة العصبية. لملء هذه الفجوة، ونحن نطلق عرض المرئيات: رسم بياني لمعرفة عالية الجودة (كجم) والتي تشمل العقد مع المواد المتعددة اللغات والصور التوضيحية المتعددة، والعلاقات ذات الصلة بصريا. ونحن نطلق أيضا نموذج استرجاع متعدد الوسائط العصبي يمكنه استخدام الصور أو الجمل كمدخلات واسترداد الكيانات في كجم. يمكن دمج نموذج استرجاع متعدد الوسائط هذا في أي خط أنابيب نموذج (الشبكة العصبية). نحن نشجع مجتمع البحث على استخدام المرئيات لتعزيز البيانات و / أو كمصدر للتأريض، من بين الاستخدامات الأخرى الممكنة. تتميز المرئيات وكذلك نماذج استرجاع متعددة الوسائط متاحة للجمهور ويمكن تنزيلها في عنوان URL هذا: https://github.com/acercalixto/visualsem.
يعد تقدير الجودة (QE) مكونا هاما لسير عمل الترجمة الآلي لأنه يقيم جودة الإخراج المترجم دون الترجمات المرجعية الاستشارية.في هذه الورقة، نناقش التقديم لدينا إلى المهمة المشتركة WMT 2021 QE.إننا نشارك في المهمة الفرعية الفرعية على مستوى الجملة 2 المهام التي تتحدى المشاركين للتنبؤ بدرجة HTER من أجل جهد التحرير على مستوى الجملة.نظامنا المقترح هو مجموعة من نماذج الانحدار من بيرت (mbert) متعددة اللغات، والتي يتم إنشاؤها بواسطة ضبط صقلها على إعدادات الإدخال المختلفة.يوضح أداء قابلا للمقارنة فيما يتعلق بترابط بيرسون، وتغلب على نظام الأساس في ماي / رموز لعدة أزواج اللغة.بالإضافة إلى ذلك، نقوم بتكييف نظامنا لإعداد اللقطة الصفرية من خلال استغلال أزواج اللغة ذات الصلة بالغة والترجمات المرجعية الزائفة.
تركز التقدم السريع في أنظمة الترجمة الآلية العصبية على مدى السنوات القليلة الماضية بشكل أساسي على تحسين جودة الترجمة، وكتركيز ثانوي، وتحسين متانة للاضطرات (على سبيل المثال الإملاء). في حين أن الأداء والقوة هي أهداف مهمة، من خلال التركيز على هذه، فإنن ا نخاطر بتوقيف الخصائص المهمة الأخرى. في هذه الورقة، نلفت الانتباه إلى حقيقة أنه بالنسبة لبعض التطبيقات، فإن الإخلاص النص الأصلي (الإدخال) مهم للحفاظ عليه، حتى لو كان ذلك يعني إدخال أنماط لغة غير عادية في الترجمة (الإخراج). نقترح طريقة بسيطة رواية لتحديد ما إذا كان نظام NMT يعرض متزايدا أو إخلاصا، من خلال التركيز على حالة اضطراب ترتيب الكلمات. نستكشف مجموعة من الوظائف لإشراض ترتيب الكلمات من الجمل المصدر دون حذف أو حقن الرموز، وقياس آثارها على الجانب المستهدف. عبر العديد من الحالات التجريبية، نلاحظ ميلا قويا نحو متانة بدلا من الإخلاص. تتيح لنا هذه النتائج أن نفهم المفاضلة بشكل أفضل بين الإخلاص والمتانة في NMT، ويفتح إمكانية تطوير النظم التي يكون فيها المستخدمون لديهم المزيد من الحكم الذاتي والتحكم في اختيار العقار الأفضل من الأنسب لحالة استخدامها.
توضح هذه الورقة أنظمة تقدير الجودة من Postech المقدمة إلى المهمة 2 من تقدير جودة WMT 2021 المهمة المشتركة: جهود ما بعد التحرير على مستوى الكلمة والجمل. نلاحظ أنه من الممكن تحسين استقرار أحدث نماذج تقدير الجودة التي لها تشفير واحد فقط استنادا إلى آلية اهتمام الذات في معالجة كل من بيانات المدخلات في وقت واحد، تسلسل مصدر والترجمة الآلية، في هذه النماذج لقد أهملت الاستفادة من تمثيلات أحادية التدريب المدربة مسبقا، والتي يتم قبولها عموما كتمثيل موثوق لمختلف مهام معالجة اللغة الطبيعية. لذلك، يستخدم طرازنا ترميزا أحاديانا مدربا مسبقا ثم تبادل معلومات اثنين من التمثيلات المشفرة من خلال شبكات تفصيلية إضافية. وفقا للوحة المتصدرين الرسمية، تفوق أنظمتنا أن أنظمة خط الأساس من حيث معامل الارتباط في ماثيوز لترجمات جودة الكلمات "تقدير الجودة على مستوى الكلمات" ومن حيث معامل الارتباط في بيرسون لتقدير الجودة على مستوى الجملة بمقدار 0.4126 و 0.5497 على التوالي.
نبلغ عن نتائج المهمة المشتركة WMT 2021 بشأن تقدير الجودة، حيث يتحدى التحدي هو التنبؤ بجودة إخراج أنظمة الترجمة الآلية العصبية على مستوى الكلمة ومستويات الجملة.ركزت هذه الطبعة على إضافات رواية رئيسيتين: (1) التنبؤ باللغات غير المرئية، أي إعدادات صفرية ، و (2) التنبؤ بالأحكام ذات الأخطاء الكارثية.بالإضافة إلى ذلك، تم إصدار بيانات جديدة لعدة من اللغات، وخاصة البيانات التي تم تحريرها بعد التحرير.قدمت الفرق المشاركة من 19 مؤسسة تماما 1263 أنظمة لمتغيرات المهام المختلفة وأزواج اللغة.
في هذه الورقة، نقدم المهمة المشتركة ESPR4NLP-2021 على تقدير الجودة القادم.بالنظر إلى زوج ترجمة من المصدر، فإن هذه المهمة المشتركة لا تتطلب فقط توفير درجة على مستوى الجملة تشير إلى الجودة الشاملة للترجمة، ولكن أيضا لشرح هذه النقاط عن طريق تحديد الكلما ت التي تؤثر سلبا على جودة الترجمة.نقدم البيانات وإرشادات التوضيحية وإعداد تقييم المهمة المشتركة، وصف النظم الستة المشاركة وتحليل النتائج.إلى حد ما من معرفتنا، هذه هي المهمة المشتركة الأولى على مقاييس تقييم NLP القابلة للتفسير.تتوفر مجموعات البيانات والنتائج في https://github.com/eval4nlp/sharedtask2021.
أحدث دراسات لاستخراج العلاقات (إعادة) الاستفادة من شجرة التبعية من جملة الإدخال لإدماج المعلومات السياقية التي يحركها بناء الجملة لتحسين الأداء النموذجي، مع القليل من الاهتمام المدفوع للقيود حيث محلل التبعية عالية الجودة في معظم الحالات غير متوفرة، خ اصة في سيناريوهات البناء. لمعالجة هذا القيد، في هذه الورقة، نقترح شبكات اتصال بياني اختصاصية (A-GCN) لتحسين الأساليب العصبية بطريقة غير مرئية لبناء الرسم البياني للسياق، دون الاعتماد على وجود محلل التبعية. على وجه التحديد، نقوم بإنشاء الرسم البياني من N-Grams المستخرجة من معجم مبني من المعلومات المتبادلة غير التاريخية (PMI) وتطبيق الانتباه عبر الرسم البياني. لذلك، يتم مرجح أزواج كلمة مختلفة من السياقات داخل وعبر N-Grams في النموذج وتسهيل إعادة استخدامها وفقا لذلك. النتائج التجريبية مع المزيد من التحليلات على مجموعات بيانات قياسية باللغة الإنجليزية لإظهار فعالية نهجنا، حيث يلاحظ أداء حديثة على كلا البيانات.
يقدم هذا العمل مجموعة متنوعة بسيطة لتقييم جودة الترجمة الآلية بناء على مجموعة من الرواية ومقاييس ثابتة.نقيم الفرقة باستخدام ارتباط لعشرات MQM القائم على الخبراء ورشة عمل WMT 2021 المقاييس.في كل من إعدادات المونولينغوية والصفرية القصيرة، نعرض تحسنا كب يرا في الأداء على مقاييس واحدة.في الإعدادات المتبادلة، نوضح أيضا أن نهج الفرع ينطبق جيدا على اللغات غير المرئية.علاوة على ذلك، نحدد خط أساس قوي خال من المرجعية التي تتفوق باستمرار على تدابير بلو واستخدامها بشكل شائع وتحسين أداء فرقنا بشكل كبير.
يأخذ هذا العمل إلقاء نظرة حاسمة على تقييم الترجمة التلقائية التي أنشأها المستخدم، والخصائص المعروفة منها رفع العديد من التحديات الخاصة ب MT.تظهر التحليلات لدينا أن قياس الأداء المتوسط للحالة باستخدام متري قياسي على مجموعة اختبار UGC يسقط أقل بكثير من إعطاء صورة موثوقة لجودة الترجمة UGC.هذا هو السبب في أننا نقدم بيانات جديدة تم تعيينها لتقييم ترجمة UGC التي تم فيها تفاح خصوصي خصوصية UGC يدويا باستخدام مصمامة غرامة الحبيبات.باستخدام مجموعة البيانات هذه، نقوم بإجراء العديد من التجارب لقياس تأثير أنواع مختلفة من خصوصيات UGC بجودة الترجمة، أكثر دقة من الممكن في السابق.
غالبا ما يتطلب تحسين تجربة المستخدم لنظام الحوار جهدا مكثفا مطورا مكثفا لقراءة سجلات المحادثة، وتشغيل التحليلات الإحصائية، والأهمية النسبية لأوجه القصور النسبية.تقدم هذه الورقة نهجا جديدا للتحليل الآلي لسجلات المحادثة التي تتعلم العلاقة بين تفاعلات ن ظام المستخدم وجودة الحوار الشاملة.على عكس العمل السابق على التنبؤ بجودة الكلام على مستوى الكلام، يتعلم نهجنا تأثير كل تفاعل من تصنيف المستخدمين العام دون إشراف على مستوى الكلام، مما يسمح باستنتاجات النماذج الناتجة عن الاستمتاع على أساس الأدلة التجريبية وتكلفة منخفضة.يحدد نموذجنا التفاعلات التي لها علاقة قوية بجودة الحوار الشاملة في إعداد chatbot.تشير التجارب إلى أن التحليل الآلي من طرازنا يوافق على أحكام الخبراء، مما يجعل هذا العمل الأول من يوضح أن هذا التعلم الإشرافه ضعيف في التنبؤ بجودة الكلام هو قابلة للتحقيق بشدة.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا