ترغب بنشر مسار تعليمي؟ اضغط هنا

تهدف الاستدلال العاطفة في المحادثات متعددة الدورات إلى التنبؤ بمشاعر المشارك في الدور التالي المقبل دون معرفة استجابة المشارك بعد، وهي خطوة ضرورية للتطبيقات مثل تخطيط الحوار. ومع ذلك، فإن التحدي الشديد لإدراك وسبب مشاعر المشاركين في المستقبل، بسبب عد م وجود معلومات عن المستقبل من المستقبل. علاوة على ذلك، فمن الضروري استنتاج المشاعر لالتقاط خصائص الانتشار العاطفي في المحادثات، مثل الثبات والمعاجين. في هذه الدراسة، نركز على التحقيق في مهمة استنتاج المشاعر في محادثات متعددة الدورات من خلال نمذجة انتشار الدول العاطفية بين المشاركين في تاريخ المحادثة، واقتراح وحدة نمط تدرك المرسل إليه تلقائيا ما إذا كان المشارك يحتفظ الحالة العاطفية التاريخية أو تتأثر بالآخرين في المنعطف القادم المقبل. بالإضافة إلى ذلك، نقترح استراتيجية فرقة لتعزيز الأداء النموذجي. تظهر الدراسات التجريبية على ثلاث مجموعات محادثة محادثة مختلفة مختلفة فعالية النموذج المقترح على العديد من خطوط الأساس القوية.
تم إجراء عدة دراسات حديثة حول التفاعلات البشرية الدينية على المحادثات دون أهداف تجارية محددة. ومع ذلك، قد تستفيد العديد من الشركات من الدراسات المخصصة لبيئات أكثر دقة مثل خدمات ما بعد البيع أو استطلاعات رضا العملاء. في هذا العمل، نضع أنفسنا في نطاق خ دمة عملاء الدردشة الحية التي نريد اكتشاف العواطف وتطورها في تدفق المحادثة. يؤدي هذا السياق إلى تحديات متعددة تتراوح من استغلال مجموعات البيانات المحظورة والصغيرة والغلبية غير المستمرة لإيجاد وتكيف مع طرق هذا السياق. نحن نتعامل مع هذه التحديات باستخدام عدد قليل من التعلم أثناء صنع الفرضية التي يمكن أن تخدم تصنيف المشاعر المحادثة لغات مختلفة وتسميات متفرق. نحن نساهم باقتراح تباين من الشبكات النموذجية للحصول على تسلسل وضع العلامات في المحادثة التي نسمينا protoseq. نحن نختبر هذه الطريقة على رقمين مع لغات مختلفة: المحادثات اليومية في محادثات الدردشة الإنجليزية وخدمة العملاء في الفرنسية. عند تطبيقها على تصنيف العاطفة في المحادثات، أثبتت طريقنا أنها تنافسية حتى مقارنة بأخرى أخرى.
تحديد المشاعر من النص أمر حاسم لمجموعة متنوعة من مهام العالم الحقيقي.نحن نعتبر أكبر فورسورا المتوفر الآن لتصنيف العاطفة الآن: جيموتونات، مع رسائل 58 ألفا تسمى القراء، والتنفيس، مع رسائل 33 مترا مصممة الكاتب.نقوم بتصميم معيارا وتقييم العديد من المساحا ت الميزة وخوارزميات التعلم، بما في ذلك نموذجين بسيطين ولكن الرواية أعلى بيرت التي تتفوق على خطوط الأساس القوية السابقة على GAEMOTION.من خلال تجربة مع مشاركين بشريين، نحلل أيضا الاختلافات بين كيفية التعبير عن المشاعر وكيفية إدراك القراء لهم.تشير نتائجنا إلى أن العواطف التي أعرب عنها الكتاب أصعب تحديدها من العواطف التي ينظر إليها القراء.نحن نشارك واجهة الويب العامة للباحثين لاستكشاف نماذجنا.
نقدم نموذجا للتنبؤ بمشاعر غرامة على طول الأبعاد المستمرة من التكافؤ والإثارة والهيمنة (VAD) مع وجود شرح عاطفي قاطع. يتم تدريب طرازنا عن طريق تقليل فقدان EMD (مسافة تحالف الأرض) بين توزيع النتيجة VAD المتوقعة وتوزيع العاطفة الفئوية التي تم فرزها على ط ول VAD، ويمكن أن تصنف في وقت واحد فئات العاطفة وتتنبؤ بعشرات VAD للحصول على عقوبة معينة. نحن نستخدم Roberta-Large Roberta المدربة مسبقا على ثلاثة كوربورا مختلفة مع ملصقات واضحة وتقييم على Emobank Corpus مع درجات VAD. نظهر أن نهجنا يصل إلى أداء قابلا للمقارنة مع وجود أحدث من المصنفات في تصنيف العاطفة الفئوية ويظهر ارتباطا إيجابيا كبيرا مع درجات فاد للحقيقة الأرضية. أيضا، يؤدي المزيد من التدريب مع الإشراف على تسميات VAD إلى تحسين الأداء خاصة عندما تكون مجموعة البيانات الصغيرة. نقدم أيضا أمثلة على تنبؤات كلمات العاطفة المناسبة التي ليست جزءا من التعليقات التوضيحية الأصلية.
التركيز النهج الحالية لتوليد الاستجابة المتعاطفة على تعلم نموذج للتنبؤ بميزة العاطفة وتوليد استجابة بناء على هذه الملصق وحققت نتائج واعدة. ومع ذلك، فإن السبب العاطفي، وهو عامل أساسي للاستجابة التعاطفية، يتم تجاهله. السبب العاطفة هو حافز للعواطف البشر ية. وإذ تدرك سبب العاطفة مفيدة لفهم المشاعر الإنسانية بشكل أفضل حتى تولد ردود أكثر تعاطفا. تحقيقا لهذه الغاية، نقترح إطارا جديدا يحسن توليد الاستجابة المتعاطفة من خلال التعرف على سبب العاطفة في المحادثات. على وجه التحديد، تم تصميم العاطفة المعقرة للتنبؤ بتسمية مشاعر السياق وتسلسل من الملصقات الموجهة نحو السبب، والتي تشير إلى ما إذا كانت الكلمة مرتبطة بالعاطفة. ثم نركض كلا من آليات الاهتمام الثابت والناعم لدمج السبب في جيل الاستجابة. تظهر التجارب أن دمج العاطفة تسبب المعلومات تعمل على تحسين أداء النموذج على كل من التعرف على العاطفة وتوليد الاستجابة.
تعتبر التعرف على عاطلة المحادثة (CER) مهمة للتنبؤ بمشاعر الكلام في سياق محادثة. على الرغم من أن نمذجة سياق المحادثة والتفاعلات بين المتحدثين قد درست على نطاق واسع، إلا أنه من المهم النظر في الدولة النفسية للمتحدث، والتي تسيطر على عمل ومكبر الصوت. تقد م الطريقة التي من بين الفنون المعرفة المنطقية (CSK) نموذجا نفسيا بطريقة متتالية (إلى الأمام والخلف). ومع ذلك، فإنه يتجاهل التفاعلات النفسية الهيكلية بين الكلام. في هذه الورقة، نقترح رسم بياني تفاعل علمي المعرفة (Skaig). في الرسم البياني المرتبط محليا، سيتم تعزيز النطق المستهدف مع معلومات العمل التي استنتجها من السياق الماضي ونهايها الضمنية السياق المستقبلية. الكلام مرتبط بالنظر في الاعتبار التأثير الحالي من نفسه. علاوة على ذلك، نستخدم CSK لإثراء الحواف بتمثيل المعرفة وعمل Skaig مع محول الرسم البياني. تقوم طريقةنا بتحقيق الأداء الحكومي والتنافسي في أربعة مجموعات بيانات CRES.
بسبب شعبية خدمات مساعد الحوار الذكي، أصبح التعرف على عاطفي الكلام أكثر وأكثر أهمية.في التواصل بين البشر والآلات، يمكن للتعرف على العاطفة وتحليل العاطفة تعزيز التفاعل بين الآلات والبشر.تستخدم هذه الدراسة نموذج CNN + LSTM لتنفيذ معالجة العاطفة الكلام ( SER) والتنبؤ بها.من النتائج التجريبية، من المعروف أن استخدام نموذج CNN + LSTM يحقق أداء أفضل من استخدام نموذج NN التقليدي.
في اللغة الرومانية، هناك بعض الموارد لفهم النص التلقائي، ولكن بالنسبة للكشف عن المشاعر، لا يوجد أساس معجم، لا يوجد شيء. لتغطية هذه الفجوة، استخراجت بيانات من Twitter وإنشاء بيانات DataSet الأولى التي تحتوي على تغريدات مشروحة مع خمسة أنواع من العواطف: الفرح والخوف والحزن والغضب والمحايد، بقصد استخدام مهام التعدين وتحليل الرأي. في هذه المقالة، نقدم بعض ميزات مجموعة بياناتنا الجديدة، وخلق معيارا لتحقيق أول نموذج لتعلم الآلات الإشراف للكشف عن المشاعر التلقائية في النصوص القصيرة الرومانية. نحقق في أداء أربع نماذج تعلم الآلة الكلاسيكية: بايس ساذجة متعددة الأثر، الانحدار اللوجستي، تصنيف ناقلات الدعم وتصنيف ناقلات الدعم الخطي. نحن نحقق أيضا في المزيد من الأساليب الحديثة مثل FastText، والتي تستخدم معلومات الكلمات الفرعية. أخيرا، نحن نغلق برت الرومانية لتصنيف النص وإظهار تجاربنا أن النموذج القائم على بيرت لديه أفضل أداء لمهمة الكشف عن العاطفة من التغريدات الرومانية. الكلمات المفتاحية: الكشف عن العاطفة، تويتر، الرومانية، التعلم الآلي الإشراف
كانت هناك عدة محاولات لإنشاء معجم عاطفي دقيق وشامل باللغة الإنجليزية، والذي يحدد المحتوى العاطفي للكلمات. من بين العديد من الموارد الشائعة الاستخدام، تلقت معجم NRC Emption (Mohammad and Turney، 2013B) معظم الاهتمام بسبب توافرها وحجمها واختيارها لنموذ ج PLUTCHIVE التعبيري 8-Close Model. في هذه الورقة، نحدد عدد كبير من الإدخالات المقلقة في معجم NRC، حيث تكون الكلمات التي ينبغي أن تكون في معظم السياقات محايدة عاطفيا، دون أي تأثير (على سبيل المثال، مثليه، الحجر "، الجبل")، ترتبط بالملصقات العاطفية التي هي غير دقيقة، غير رسمية، تقشير، أو، في أحسن الأحوال، المعتمدة للغاية والسياق (على سبيل المثال، مثليه "المسمى بالاشمئزاز والحزن، والحجر" كغضب، أو جبل "كما يتيح). نحن نصف إجراء إجراء لتصحيح هذه المشكلات شبه تلقائيا في NRC، والذي يتضمن فئات POS Disbigiguating ومحاذاة إدخالات NRC مع طمامة العاطفة الأخرى لاستنتاج دقة الملصقات. نوضح عبر معيار تجريبي يتم تحسين جودة الموارد. نقوم بإصدار المورد المنقح وشمزنا لتمكين الباحثين الآخرين من إعادة إنتاج والبناء عند النتائج.
اكتسبت Chatbots Social Chatbots شعبية هائلة، وجاذبيتها لا تكمن فقط في قدرتها على الاستجابة للطلبات المتنوعة من المستخدمين، ولكن أيضا في القدرة على تطوير اتصال عاطفي مع المستخدمين. لتعزيز وتعزيز Chatbots الاجتماعي، نحتاج إلى التركيز على زيادة تفاعل ال مستخدم وتأخذ في الاعتبار كل من الحاصل الفكري والعاطفي في وكلاء المحادثة. لذلك، في هذا العمل، نقترح مهمة المعنويات تدرك العاطفة التي تسيطر عليها توليد الحوار الشخصية التي تمنح الجهاز القدرة على الاستجابة عاطفيا ووفقا لشخصية المستخدم. نظرا لأن المشاعر والعواطف مرتبطة بدرجة كبيرة، نستخدم معرفة المشاعر بالكلام السابق لتوليد الاستجابة العاطفية الصحيحة وفقا لشخص المستخدم. نقوم بتصميم إطار توليد حوار يستند إلى المحولات، ينشئ الردود الحساسة لعاطفة المستخدم ويتوافق مع الشخصية والشاعر أيضا. علاوة على ذلك، يتم تشفير معلومات الشخصية من قبل تشفير محول مختلف، إلى جانب تاريخ الحوار، يتم تغذيةها إلى وحدة فك الترميز لتوليد الاستجابات. ناهز DataSet PersonAchat مع معلومات المشاعر لتحسين جودة الاستجابة. تظهر النتائج التجريبية على DataStet Personachat أن الإطار المقترح يتفوق بشكل كبير على خطوط الأساس الحالية، مما يولد ردود عاطفية شخصية وفقا للمشاعر التي توفر اتصال عاطفي أفضل ورضا المستخدمين كما هو مطلوب في chatbot الاجتماعي.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا