ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider malicious attacks on actuators and sensors of a feedback system which can be modeled as additive, possibly unbounded, disturbances at the digital (cyber) part of the feedback loop. We precisely characterize the role of the unstable poles and zeros of the system in the ability to detect stealthy attacks in the context of the sampled data implementation of the controller in feedback with the continuous (physical) plant. We show that, if there is a single sensor that is guaranteed to be secure and the plant is observable from that sensor, then there exist a class of multirate sampled data controllers that ensure that all attacks remain detectable. These dual rate controllers are sampling the output faster than the zero order hold rate that operates on the control input and as such, they can even provide better nominal performance than single rate, at the price of higher sampling of the continuous output.
We consider sensor transmission power control for state estimation, using a Bayesian inference approach. A sensor node sends its local state estimate to a remote estimator over an unreliable wireless communication channel with random data packet drop s. As related to packet dropout rate, transmission power is chosen by the sensor based on the relative importance of the local state estimate. The proposed power controller is proved to preserve Gaussianity of local estimate innovation, which enables us to obtain a closed-form solution of the expected state estimation error covariance. Comparisons with alternative non data-driven controllers demonstrate performance improvement using our approach.
We present what we believe to be the first formal verification of a biologically realistic (nonlinear ODE) model of a neural circuit in a multicellular organism: Tap Withdrawal (TW) in emph{C. Elegans}, the common roundworm. TW is a reflexive behavio r exhibited by emph{C. Elegans} in response to vibrating the surface on which it is moving; the neural circuit underlying this response is the subject of this investigation. Specifically, we perform reachability analysis on the TW circuit model of Wicks et al. (1996), which enables us to estimate key circuit parameters. Underlying our approach is the use of Fan and Mitras recently developed technique for automatically computing local discrepancy (convergence and divergence rates) of general nonlinear systems. We show that the results we obtain are in agreement with the experimental results of Wicks et al. (1995). As opposed to the fixed parameters found in most biological models, which can only produce the predominant behavior, our techniques characterize ranges of parameters that produce (and do not produce) all three observed behaviors: reversal of movement, acceleration, and lack of response.
The most common approach to mitigate the impact that the presence of malicious nodes has on the accuracy of decision fusion schemes consists in observing the behavior of the nodes over a time interval T and then removing the reports of suspect nodes from the fusion process. By assuming that some a-priori information about the presence of malicious nodes and their behavior is available, we show that the information stemming from the suspect nodes can be exploited to further improve the decision fusion accuracy. Specifically, we derive the optimum fusion rule and analyze the achievable performance for two specific cases. In the first case, the states of the nodes (corrupted or honest) are independent of each other and the fusion center knows only the probability that a node is malicious. In the second case, the exact number of corrupted nodes is fixed and known to the fusion center. We also investigate the optimum corruption strategy for the malicious nodes, showing that always reverting the local decision does not necessarily maximize the loss of performance at the fusion center.
In this paper we study the so-called spin-boson system, namely {a two-level system} in interaction with a distinguished mode of a quantized bosonic field. We give a brief description of the controlled Rabi and Jaynes--Cummings models and we discuss t heir appearance in the mathematics and physics literature. We then study the controllability of the Rabi model when the control is an external field acting on the bosonic part. Applying geometric control techniques to the Galerkin approximation and using perturbation theory to guarantee non-resonance of the spectrum of the drift operator, we prove approximate controllability of the system, for almost every value of the interaction parameter.
The problem of quickest change detection with communication rate constraints is studied. A network of wireless sensors with limited computation capability monitors the environment and sends observations to a fusion center via wireless channels. At an unknown time instant, the distributions of observations at all the sensor nodes change simultaneously. Due to limited energy, the sensors cannot transmit at all the time instants. The objective is to detect the change at the fusion center as quickly as possible, subject to constraints on false detection and average communication rate between the sensors and the fusion center. A minimax formulation is proposed. The cumulative sum (CuSum) algorithm is used at the fusion center and censoring strategies are used at the sensor nodes. The censoring strategies, which are adaptive to the CuSum statistic, are fed back by the fusion center. The sensors only send observations that fall into prescribed sets to the fusion center. This CuSum adaptive censoring (CuSum-AC) algorithm is proved to be an equalizer rule and to be globally asymptotically optimal for any positive communication rate constraint, as the average run length to false alarm goes to infinity. It is also shown, by numerical examples, that the CuSum-AC algorithm provides a suitable trade-off between the detection performance and the communication rate.
105 - Aivar Sootla 2015
In this paper, a link between monotonicity of deterministic dynamical systems and propagation of order by Markov processes is established. The order propagation has received considerable attention in the literature, however, this notion is still not fully understood. The main contribution of this paper is a study of the order propagation in the deterministic setting, which potentially can provide new techniques for analysis in the stochastic one. We take a close look at the propagation of the so-called increasing and increasing convex orders. Infinitesimal characterisations of these orders are derived, which resemble the well-known Kamke conditions for monotonicity. It is shown that increasing order is equivalent to the standard monotonicity, while the class of systems propagating the increasing convex order is equivalent to the class of monotone systems with convex vector fields. The paper is concluded by deriving a novel result on order propagating diffusion processes and an application of this result to biological processes.
207 - Zhenwu Shi , Fumin Zhang 2015
When multiple model predictive controllers are implemented on a shared control area network (CAN), their performance may degrade due to the inhomogeneous timing and delays among messages. The priority based real-time scheduling of messages on the CAN introduces complex timing of events, especially when the types and number of messages change at runtime. This paper introduces a novel hybrid timing model to make runtime predictions on the timing of the messages for a finite time window. Controllers can be designed using the optimization algorithms for model predictive control by considering the timing as optimization constraints. This timing model allows multiple controllers to share a CAN without significant degradation in the controller performance. The timing model also provides a convenient way to check the schedulability of messages on the CAN at runtime. Simulation results demonstrate that the timing model is accurate and computationally efficient to meet the needs of real-time implementation. Simulation results also demonstrate that model predictive controllers designed when considering the timing constraints have superior performance than the controllers designed without considering the timing constraints.
In cyber-physical systems such as in-vehicle wireless sensor networks, a large number of sensor nodes continually generate measurements that should be received by other nodes such as actuators in a regular fashion. Meanwhile, energy-efficiency is als o important in wireless sensor networks. Motivated by these, we develop scheduling policies which are energy efficient and simultaneously maintain regular deliveries of packets. A tradeoff parameter is introduced to balance these two conflicting objectives. We employ a Markov Decision Process (MDP) model where the state of each client is the time-since-last-delivery of its packet, and reduce it into an equivalent finite-state MDP problem. Although this equivalent problem can be solved by standard dynamic programming techniques, it suffers from a high-computational complexity. Thus we further pose the problem as a restless multi-armed bandit problem and employ the low-complexity Whittle Index policy. It is shown that this problem is indexable and the Whittle indexes are derived. Also, we prove the Whittle Index policy is asymptotically optimal and validate its optimality via extensive simulations.
We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instan t not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا