ترغب بنشر مسار تعليمي؟ اضغط هنا

حقق نهج تكبير البيانات والضيقات الخصم مؤخرا نتائج واعدة في حل المشكلة المفرطة في العديد من مهام معالجة اللغة الطبيعية (NLP) بما في ذلك تصنيف المعنويات. ومع ذلك، فإن الدراسات الحالية التي تهدف إلى تحسين قدرة التعميم من خلال زيادة البيانات التدريبية مع أمثلة مرادفة أو إضافة ضوضاء عشوائية إلى Adgeddings Word، والتي لا يمكنها معالجة مشكلة الرابطة الزائفة. في هذا العمل، نقترح إطارا لتعزيز التعزيز نهاية إلى نهاية، والذي ينفذ بشكل مشترك توليد بيانات مضادة وتصنيف المعنويات المزدوجة. نهجنا لديه ثلاث خصائص: 1) يولد المولد تلقائيا جمل هائلة ومتنوعة؛ 2) يحتوي التمييز على مؤشر للمشاعر الجانبية الأصلية ومؤشر المعنويات الجانبية الناضجة، والذي يقوم بتقييم جودة العينة الناتجة بشكل مشترك ومساعدة المولد على توليد عينات مجفوف عالية الجودة أعلى جودة؛ 3) يتم استخدام التمييز مباشرة كقسم المعنويات النهائية دون الحاجة إلى بناء واحد إضافي. تظهر تجارب واسعة أن نهجنا يتفوق على خطوط خطوط خطوط تكبير البيانات قوية على العديد من مجموعات بيانات تصنيف المعفاة القياسية. يؤكد إجراء مزيد من التحليل بمزايا نهجنا في توليد عينات تدريب أكثر تنوعا وحل مشكلة الرابطة الزائفة في تصنيف المعنويات.
إن كيان مشترك واستخراج العلاقات يمثل تحديا بسبب التفاعل المعقد للتفاعل بين التعرف على الكيان المسمى واستخراج العلاقة. على الرغم من أن معظم الأعمال القائمة تميل إلى تدريب هذه المهامتين المشتركين من خلال شبكة مشتركة، إلا أنها تفشل في الاستفادة الكاملة من الترابط بين أنواع الكيان وأنواع العلاقات. في هذه الورقة، نقوم بتصميم شبكة مزدوجة متزامنة رواية (SDN) مع اهتمام عبر النوع عبر الانتباه بشكل منفصل وتفاعي تفاعلي أنواع الكيان وأنواع العلاقات. من ناحية، يعتمد SDN اثنين من النوع BI اتجاهي ISOMORPHIC LSTM لترميز التمثيلات المحسنة نوع الكيان والتمثيلات المحسنة نوع العلاقة، على التوالي. من ناحية أخرى، نماذج SDN صراحة الترابط بين أنواع الكيان وأنواع العلاقات عبر آلية الاهتمام عبر النوع. بالإضافة إلى ذلك، نقترح أيضا استراتيجية تعليمية متعددة المهام الجديدة عبر النمذجة تفاعل نوعين من المعلومات. تجارب مجموعات بيانات NYT و WEBNLG تحقق من فعالية النموذج المقترح، وتحقيق الأداء الحديث في الفن.
يستخدم النظورات الشائعات بشكل متزايد محتوى الوسائط المتعددة لجذب الاهتمام والثقة للمستهلكين الأخبار.على الرغم من أن مجموعة من نماذج الكشف عن الشائعات قد استغلت البيانات متعددة الوسائط، إلا أنها نادرا ما تنظر في العلاقات غير المتسقة بين الصور والنصوص. علاوة على ذلك، فشلوا أيضا في العثور على طريقة قوية لتحديد معلومات التناقض بين محتويات المنشورات ومعرفة الخلفية.بدافع من الحدس أن الشائعات أكثر عرضة للحصول على معلومات غير متناسق في دلالات، ويقترح شبكة متناسقة مزدوجة موجهة إلى المعرفة على المعرفة للكشف عن شائعات مع محتويات الوسائط المتعددة.يمكنه التقاط دلالات غير متناسقة على المستوى الشامل ومستوى المعرفة المحتوى في إطار واحد موحد.تثبت تجارب واسعة على مجموعات بيانات حقيقية في العالم الحقيقي أن اقتراحنا يمكن أن يتفوق على خطوط الأساس الحديثة.
Dual-Encoders هي آلية واعدة لاسترجاع الإجابة في أنظمة الإجابة على الأسئلة (QA). حاليا معظم التشفير المزدوج التقليدية تعلم التمثيل الدلالي للأسئلة والأجوبة فقط من خلال نقاط مطابقة. اقترح الباحثون تقديم ميزات تفاعلات ضمان الجودة في وظيفة التهديف ولكن ب تكلفة منخفضة الكفاءة في مرحلة الاستدلال. للحفاظ على الترميز المستقل للأسئلة والأجوبة أثناء مرحلة الاستدلال، يتم تقديم التشفير التلقائي التلقائي بشكل أكبر لإعادة بناء الإجابات (الأسئلة) من Asceddings من السؤال (الإجابة) بمثابة مهمة مساعدة لتعزيز تفاعل QA في مرحلة التدريب في مرحلة التدريب في مرحلة التدريب في مرحلة التدريب في مرحلة التدريب. ومع ذلك، فإن احتياجات جيل النص واسترجاع الإجابة مختلفة، مما يؤدي إلى صلابة في التدريب. في هذا العمل، نقترح إطارا لتعزيز نموذج المشفرين المزدوجين مع الإجابة على السؤال وآلية محاذاة هندسية جديدة (GAM) لمواءمة الهندسة من المدينات من الترميز المزدوج مع ذلك من التشفير عبر التشفير. تظهر النتائج التجريبية الواسعة أن إطارنا يحسن بشكل كبير من طراز الترميز المزدوج وتفوق على الطريقة التي تظهر على مجموعة بيانات استرجاع الإجابة المتعددة.
نقترح نموذجا عاما عميقا يقوم بإجراء تحليل الطباعة وإعادة بناء الخط عن طريق تعلم أنواع DESENTANGLED من كل من نمط الخط وشكل الأحرف. يتيح لنمنا نهجنا على زيادة عدد أنواع الأحرف التي يمكننا النموذج بشكل فعال مقارنة بالطرق السابقة. على وجه التحديد، نستنتج المتغيرات الكامنة المنفصلة التي تمثل الشخصية والخط عبر زوج من شبكات الاستدلال التي تأخذ كمجموعات مدخلات من الحروفية التي تشترك كلها إما كوعي حرف، أو تنتمي إلى الخط نفسه. يتيح هذا التصميم طرازنا التعميم مع الشخصيات التي لم يتم ملاحظتها أثناء وقت التدريب، وهي مهمة مهمة في ضوء Sparsity النسبية لمعظم الخطوط. لقد طرحنا أيضا خسارة جديدة، مكيفة من العمل السابق التي تقيس احتمال استخدام توزيع متكيف في مساحة متوقعة، مما يؤدي إلى المزيد من الصور الطبيعية دون الحاجة إلى تمييز. نحن نقيم في مهمة إعادة بناء الخط على مجموعات البيانات المختلفة التي تمثل أنواع الأحرف من العديد من اللغات، ومقارنة إيجابية لأنظمة نقل النمط الحديث وفقا لمقاييس كل من المقاييس التلقائية والتقييم يدويا.
في هذه الورقة، نقترحنا بمحاذاة تمثيلات الجملة من لغات مختلفة إلى مساحة تضمين موحدة، حيث يمكن حساب أوجه التشابه الدلالي (كل من الصليب اللغوي والأونولينغ) بمنتج نقطة بسيطة.نماذج اللغة المدربة مسبقا صقلها بشكل جيد مع مهمة تصنيف الترجمة.يستخدم العمل الحا لي (فنغ وآخرون.، 2020) جمل داخل الدفعة مثل السلبيات، والتي يمكن أن تعاني من مسألة السلبيات السهلة.نحن نتكيف مع MOCO (هو et al.، 2020) لمزيد من تحسين جودة المحاذاة.نظرا لأن النتائج التجريبية تظهر، فإن تمثيلات الجملة التي تنتجها نموذجنا لتحقيق أحدث الولاية الجديدة في العديد من المهام، بما في ذلك البحث عن التشابه التشابه TATOEBA EN-ZH (Artetxe Andschwenk، 2019b)، Bucc En-Zh BiteXTالتشابه النصي في 7 مجموعات البيانات.
المهمة Sereval 2021 Semeval 5: الكشف عن الأمور السامة هي مهمة تحديد المواقف المسيح السامة في النص، والتي توفر أداة أوتوماتيكية قيمة للمحتويات عبر الإنترنت المعتدلة.هذه الورقة تمثل طريقة المركز الثاني للمهمة، وفريق مناهضين.في حين يعتمد نهج واحد على ال جمع بين أساليب التضمين المختلفة لاستخراج التمثيلات الدلالية والمنظمات المختلفة للكلمات في السياق؛يستخدم الآخر بيانات إضافية مع التدريب الذاتي المخصص قليلا، وهي تقنية تعليمية شبه إشراف، لمشاكل علامات التسلسل.يستفيد كل من بهيئاتنا نموذجا قويا لغة قوية، والتي تم ضبطها بشكل جيد على مهمة تصنيف سامة.على الرغم من أن الأدلة التجريبية تشير إلى فعالية أعلى من النهج الأول من المرتبة الثانية، فإن الجمع بينها يؤدي إلى أفضل النتائج لدينا من 70.77 F1 النتيجة على اختبار DataSet.
الهدف من هذا التقرير هو دراسة تأثير استخدام جدران قص مع جملة إطارات مقاومة للعزوم عن طريق نمذجة منشأين إطاريين. النموذج الأول هو جملة ثنائية تشترك فيها إطارات مقاومة و جدران قص، والنموذج الثاني بدون جدران قص، و تحليلهما استاتيكيا (طريقة القوة الجانبي ة الاستاتيكية) و ديناميكيا (طريقة طيف الاستجابة) باستخدام برنامج إيتابس 2016 ،و مقارنة نتائج قوى القص القاعدي والانتقالات و أنماط الاهتزاز، بهدف تشكيل فهم شامل للاستخدام الأمثل لجدران القص. هذا التقرير يطرح أسئلة حدية في ما يتعلق بالعوامل الأساسية لمقاومة القوى الزلزالية على منشآت مماثلة، حيث يمكن أن تلعب القساوة أو المطاوعة دورا معاكسا في المقاومة الكلية للمنشأ.
هدَف هذا البحث إلى دراسة التمثيل الثنوي لزمرة منتهية, حيث قمنا بإثبات أنّه إذا كان التمثيل p خزول تماماً و قابل للتحليل و واحدياً فإنّ التمثيل الثنوي المقابل له *p هو أيضاً خزول تماماً و قابل للتحليل و واحدي.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا