ترغب بنشر مسار تعليمي؟ اضغط هنا

نقدم في هذا البحث دراسة علمية متقدمة متطورة و تواكب الدراسات و التكنولوجيا الحديثة حول التنبؤ قصير الأمد جدا بالأحمال الكهربائية و تطبيق الدراسة من أجل التنبؤ بالحمل الكهربائي في المنظومة الكهربائية السورية الأساسية حيث تم دراسة التنبؤ بهذا الحمل لأر بع ساعات قادمة وفق المعيار الذي تتبعه وزارة الكهرباء في القطر لكن بفواصل زمنية قصيرة تبلغ عشرة دقائق بين التنبؤ و التنبؤ الذي يليه و قد أطلقنا عليه التنبؤ الآني.
في هذه البحث تم تصميم شبكة عصبية اصطناعية تعتمد على خوارزمية الانتشار الخلفي للخطأ (BPNN) لتشخيص أورام الثدي و كذلك تصميم مصنف للتشخيص باستخدام نظام الاستدلال العصبي الضبابي المتكيف (ANFIS) و قد اعتمدت كلا الدراستين على السمات البنيوية للخزع الموجودة في قاعدة البيانات لصور الثدي لجامعة ويسكونسون في الولايات المتحدة الأميركية” Wisconson Brest Cancer dataset“ في النهاية تم اجراء مقارنة بين الدراستين من أجل التشخيص الحميد و الخبيث للكتل السرطانية لسرطان الثدي حيث حصلت الدراسة الاولى BPNN على دقة %95.95 بينما الدراسة الثانية ANFIS حصلت على دقة 91.9% و هذه النتائج تعتبر هامة جدا و مساعدة إذا ما قورنت بالأبحاث المعتمدة على السمات الشكلية المأخوذة من الصور لأجهزة متنوعة كالماموغراف و الرنين المغناطيسي.
يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، و هو يلعب دوراً مؤثّراً في تطوير و إدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. و قد اعتمدت الدراسة م ن أجل ذلك على القيم الشهريّة لدرجة حرارة الهواء و الرطوبة النسبيّة فقط كمدخلات، واعتمدت التبخّر الإنائي الشهري كمُخرج للشبكة. استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب و تحقيق الشبكة مع تغيير طرائق التدريب و عدد الطبقات الخفيّة و عدد العصبونات في كل طبقة منها، و قد أظهرت النتائج القدرة الجيّدة للشبكة العصبيّة الاصطناعيّة ذات الهيكليّة 2-10-1 على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلّي R) 96.786%) و بجذر متوسّط مربّعات الأخطاء RMSE) 24.52 mm/month) لمجموعة البيانات الكاملة، و قد أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العناصر الأكثر تأثيراً على التبخر.
سنقدم في هذا البحث منهجية علمية للتنبؤ قصيرة جدا بالحمولات الكهربائية للمنظومة الكهربائية السورية أي التنبؤ بهذه الحمولات لعدة ساعات قادمة و قد أطلقنا على هذا النوع من التنبؤ التنبؤ العملياتي, تعتمد هذه المنهجية على استخدام الشبكات العصبية الصناعية.
قمنا من خلال هذا البحث بتصميم برنامج يهدف إلى تحديد النقاط الحرجة التي يمكن أن تسبب إنهيار التوتر، و بناء شبكة عصبونية ضمن بيئة برمجيات ماتلاب مهمتها التنبؤ بقيمة الاستطاعة العظمى التي يمكن نقلها على نظام القدرة الكهربائية في ظروف انهيار التوتر دو ن أن ينهار نظام القدرة، و تدريبها على حالات واقعية تعرضت لها أنظمة القدرة الكهربائية، ثم قمنا بتطبيق هذه الشبكة العصبونية المدربة على شبكة مرجعية IEEE-14 Bus-bar لإختبار أدائها و مقارنة النتائج.
يقدم البحث تصميماً لنظام تفقد آلي للطلبة، يقوم النظام بالتقاط صورة للطالب ثم استخلاص ملامح الوجه الأساسية، تم تدريب الشبكة باستخدام خوارزمية الانتشار العكسي، إذ تم توليد قاعدة بيانات تدريبية لكل طالب، مكونة من 15 عينة تدريبية له لمرة واحدة في بداية ا لفصل الدراسي، كل عينة تحتوي تعابير الوجه اللازمة للتعرف على طالب، تُدرب الشبكة العصبونية على قاعدة بيانات الطلبة من أجل الحصول على شبكة عصبونية مدربة قادرة على التعرف على طلاب كل فئة بالاعتماد على ملامحهم، وبالتالي معرفة من حضر الجلسة ممن لم يحضر، تم تزويد النظام المصمم لهذا الغرض بالشبكة المدربة، يقدم النظام إمكانية إجراء التفقد الآلي للطلاب حسب فحوى الدراسة مع التنبيه في حال وجود صورة لطالب لا ينتمي لنفس المجموعة.
طُبق مفهوم إعادة استخدام التردد بشكل ناجح في أنظمة الاتصالات الخليوية الحديثة، من أجل زيادة سعة النظام، من الممكن إحداث تحسُّن آخر في السعة بتطبيق المصفوفات المتكيفة في المحطة الأساسية، يستخدم من أجل ملاحقة المستخدمين المرغوبين خوارزميات إيجاد الاتجا ه من أجل تحديد أماكنهم وفقاً لحركتهم ضمن الخلايا أو فيمابينها. اقترح مؤخراً خوارزميات إيجاد الاتجاه المعتمدة على الشبكات العصبونية وذلك لإيجاد اتجاه المنبع عن طريق تقييم أداء الشبكات العصبونية بمقارنة توقعاتها وانحرافها المعياري ومتوسط الخطأ التربيعي بين قيمها المتوقعة وبين ماتم قياسه، هذا البحث يعتمد هذا المنحى حيث يتم مقارنة خرج الهوائيات المصفوفية من حيث المطال، ثم اختيار الإشارة ذات المطال الأفضل وإظهارها على الخرج النهائي للنظام.
يعرض هذا البحث طريقة جديدة للتعرف على الوجه في حالات انفعالية مختلفة. تعتمد هذه الطريقة على خوارزميتنا المقترحة SD.R&C لاكتشاف الجلد البشري و تحديد الوجه, و على تصنيف نوع التعبير.
هذه المقالة تقدم طريقة جديدة مقترحة للتعرف على بصمات الأصـابع باسـتخدام تحويـل رجليت Ridglet الثلاثي الأبعاد. في المرحلة الأولى نعد بصمة الأصابع الثلاثية البعد بمنزلة رقم تعريف شخصي، ثم تقوم باستخلاص الخصائص المطلوبة باستخدام طريقة جديدة تعتمد على تحويل رجليت الثلاثي الأبعاد، و المستنتج من تحويل رجليت ثنائي البعد. في المرحلة الثانية نستخدم التعرف باستخدام الشبكات العصبونية لإنشاء قاعدة المعطيـات الضرورية لتدريب النظام، حيث نقوم باختبار النظام باستخدام خمسين بصمة أصابع مختلفة، حيث تبين النتائج أن النظام يعطي نتائج تعرف ممتازة (بالمقارنة بما هو مبين في [12]). باستخدام تجارب التقييم السابقة، يمكن التحقق من بصمة أصبع فـي ظـروف ضـجيجية، بضجيج يصل إلى نسبة %96 ،و برابط يصل إلى درجة 9 مع البصمة المدخلة.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا