ترغب بنشر مسار تعليمي؟ اضغط هنا

عادة ما يتم تدريب نماذج الترجمة الآلية العصبية (NMT) باستخدام فقدان انتروبيا Softmax حيث يتم مقارنة توزيع SoftMax بالملصقات الذهبية. في سيناريوهات منخفضة الموارد ونماذج NMT تميل إلى الأداء بشكل سيئ لأن التدريب النموذجي يتقارن بسرعة إلى نقطة حيث يتجاه ل توزيع SoftMax باستخدام تسجيل الدخول إلى توزيع تسمية الذهب. على الرغم من أن تجانس الملصقات هو حل مشهور لمعالجة هذه المشكلة، فإننا نقترح مزيد من اقتراح تقسيم السجلات بواسطة معامل درجة الحرارة أكبر من واحد وإجبار توزيع SoftMax على أن يكون أكثر سلاسة أثناء التدريب. هذا يجعل من الصعب على النموذج بسرعة أكثر من اللازم. في تجاربنا على 11 أزواج لغوية في مجموعة بيانات Treebank الآسيوية المنخفضة الموارد، لاحظنا تحسينات كبيرة في جودة الترجمة. يركز تحليلنا على إيجاد التوازن الصحيح من تجانس الملصقات و SoftMax STIVING والتي تشير إلى أنها طرق متعامدة. وأخيرا، تكشف دراسة الانترشيات والتجميلات SoftMax عن تأثير طريقتنا على السلوك الداخلي لنماذج NMT الخاصة بنا.
نؤيد موضوع اتجاه الترجمة في البيانات المستخدمة لتدريب أنظمة الترجمة الآلية العصبية والتركيز على سيناريو في العالم الحقيقي مع اتجاه الترجمة المعروفة والاختلالات في اتجاه الترجمة: هانزارد الكندي.وفقا للمقاييس التلقائية ونحن نلاحظ أنه باستخدام البيانات الموازية التي تم إنتاجها في "اتجاه الترجمة" المطابقة (الهدف الأصيل والترجمة) يحسن جودة الترجمة.في حالات عدم توازن البيانات من حيث اتجاه الترجمة ونتجد أن وضع العلامات على اتجاه الترجمة يمكن إغلاق فجوة الأداء.نقوم بإجراء تقييم بشري يختلف قليلا عن المقاييس التلقائية، لكنه يؤكد ذلك على هذه البيانات الفرنسية الإنجليزية المعروفة لاحتواء ترجمات عالية الجودة ومصدر مختلط أصيل أو مختار على تحسين المصدر المرتبط بالترجمة للتدريب.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا