ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - T. Ferrus , A. Rossi , A. Andreev 2013
We discuss the effects of gigahertz photon irradiation on a degenerately phosphorous-doped silicon quantum dot, in particular, the creation of voltage offsets on gate leads and the tunneling of one or two electrons via Coulomb blockade lifting at 4.2 K. A semi-analytical model is derived that explains the main features observed experimentally. Ultimately both effects may provide an efficient way to optically control and operate electrically isolated structures by microwave pulses. In quantum computing architectures, these results may lead to the use of microwave multiplexing to manipulate quantum states in a multi-qubit configuration.
We present data on the electrical transport properties of highly-doped silicon-on-insulator quantum dots under the effect of pulsed magnetic fields up to 48 T. At low field intensities, B<7 T, we observe a strong modification of the conductance due t o the destruction of weak localization whereas at higher fields, where the magnetic field length becomes comparable to the effective Bohr radius of phosphorous in silicon, a strong decrease in conductance is demonstrated. Data in the high and low electric field bias regimes are then compared to show that close to the Coulomb blockade edge magnetically-induced quenching to single donors in the quantum dot is achieved at about 40 T.
112 - T. Ferrus , A. Rossi , W. Lin 2011
We have observed a negative differential conductance with singular gate and source-drain bias dependences in a phosphorus-doped silicon quantum dot. Its origin is discussed within the framework of weak localization. By measuring the current-voltage c haracteristics at different temperatures as well as simulating the tunneling rates dependences on energy, we demonstrate that the presence of shallow energy defects together with an enhancement of localization satisfactory explain our observations. Effects observed in magnetic fields are also discussed.
67 - T. Ferrus , A. Rossi , M. Tanner 2009
As semiconductor device dimensions are reduced to the nanometer scale, effects of high defect density surfaces on the transport properties become important to the extent that the metallic character that prevails in large and highly doped structures i s lost and the use of quantum dots for charge sensing becomes complex. Here we have investigated the mechanism behind the detection of electron motion inside an electrically isolated double quantum dot that is capacitively coupled to a single electron transistor, both fabricated from highly phosphorous doped silicon wafers. Despite, the absence of a direct charge transfer between the detector and the double dot structure, an efficient detection is obtained. In particular, unusually large Coulomb peak shifts in gate voltage are observed. Results are explained in terms of charge rearrangement and the presence of inelastic cotunneling via states at the periphery of the single electron transistor dot.
We present a realisation of high bandwidth instrumentation at cryogenic temperatures and for dilution refrigerator operation that possesses advantages over methods using radio-frequency single electron transistor or transimpedance amplifiers. The abi lity for the low temperature electronics to carry out faster measurements than with room temperature electronics is investigated by the use of a phosphorous-doped single-electron transistor. A single-shot technique is successfully implemented and used to observe the real time decay of a quantum state. A discussion on various measurement strategies is presented and the consequences on electron heating and noise are analysed.
We have fabricated a custom cryogenic Complementary Metal-Oxide-Semiconductor (CMOS) integrated circuit that has a higher measurement bandwidth compared with conventional room temperature electronics. This allowed implementing single shot operations and observe the real-time evolution of the current of a phosphorous-doped silicon single electron transistor that was irradiated with a microwave pulse. Relaxation times up to 90 us are observed, suggesting the presence of well isolated electron excitations within the device. It is expected that these are associated with long decoherence time and the device may be suitable for quantum information processing.
We observe a complex change in the hopping exponent value from 1/2 to 1/3 as a function of disorder strength and electron density in a sodium-doped silicon MOSFET. The disorder was varied by applying a gate voltage and thermally drifting the ions to different positions in the oxide. The same gate was then used at low temperature to modify the carrier concentration. Magnetoconductivity measurements are compatible with a change in transport mechanisms when either the disorder or the electron density is modified suggesting a possible transition from a Mott insulator to an Anderson insulator in these systems.
We present the characterization of the band structure of GaAs/AlAs quantum-wire 1D superlattices performed by magnetophonon resonance with pulsed magnetic fields up to 35 T. The samples, generated by the atomic saw method from original quantum-well 2 D superlattices, underwent substantial modifications of their energy bands built up on the X-states of the bulk. We have calculated the band structure by a finite element method and we have studied the various miniband structures built up of the masses m_t and m_l of GaAs and AlAs at the point X. From an experimental point of view, the main result is that in the 2D case we observe only resonances when the magnetic field B is applied along the growth axis whereas in the 1D case we obtain resonances in all magnetic field configurations. The analysis of the maxima (or minima for B // E) in the resistivity rho_xy as a function of B allows us to account, qualitatively and semi-quantitatively, for the band structure theoretically expected.
We use both Quantum Hall and Shubnikov de Haas experiments at high magnetic field and low temperature to analyse broadening processes of Landau levels in a delta-doped 2D quantum well superlattice and a 1D quantum wire superlattice generated from the first one by controlled dislocation slips. We deduce first the origin of the broadening from the damping factor in the Shubnikov de Haas curves in various configurations of the magnetic field and the measured current for both kinds of superlattice. Then, we write a general formula for the resistivity in the Quantum Hall effect introducing a dephasing factor we link to the process of localization.
The atomic saw method uses the passage of dislocations in two-dimensional (2D) quantum-well superlattices to create periodic slipping layers and one-dimensional (1D) quantum wire superlattices. The effects of this space structuring of the samples on the allowed energies are analysed in the case of GaAs d-doped superlattices. If they are sufficiently large, the various minigaps appearing in the 1D band structure could be responsible for the presence of negative differential resistance (NDR) with high critical current in these systems. The purpose is to determine the evolution of the minigaps in terms of the sample parameters and to obtain the means to determine both the 2D and 1D structural characteristics where NDR could appear.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا