ﻻ يوجد ملخص باللغة العربية
We have observed a negative differential conductance with singular gate and source-drain bias dependences in a phosphorus-doped silicon quantum dot. Its origin is discussed within the framework of weak localization. By measuring the current-voltage characteristics at different temperatures as well as simulating the tunneling rates dependences on energy, we demonstrate that the presence of shallow energy defects together with an enhancement of localization satisfactory explain our observations. Effects observed in magnetic fields are also discussed.
Spin-dependent transport through a multilevel quantum dot weakly coupled to ferromagnetic leads is analyzed theoretically by means of the real-time diagrammatic technique. Both the sequential and cotunneling processes are taken into account, which ma
We present data on the electrical transport properties of highly-doped silicon-on-insulator quantum dots under the effect of pulsed magnetic fields up to 48 T. At low field intensities, B<7 T, we observe a strong modification of the conductance due t
We present transport measurements of silicon MOS split gate structures with and without Sb implants. We observe classical point contact (PC) behavior that is free of any pronounced unintentional resonances at liquid He temperatures. The implanted dev
We present a theoretical study of the charging effects in single and double layer black phosphorus quantum dots (BPQDs) with lateral sizes of 2 nm and 3 nm. We demonstrate that the charging of BPQDs are able to store up to an $N_{max}$ electron (that
We electrically measure intrinsic silicon quantum dots with electrostatically defined tunnel barriers. The presence of both p-type and n-type ohmic contacts enables the accumulation of either electrons or holes. Thus we are able to study both transpo