ترغب بنشر مسار تعليمي؟ اضغط هنا

Variation of the hopping exponent in disordered silicon MOSFETs

240   0   0.0 ( 0 )
 نشر من قبل Thierry Ferrus
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe a complex change in the hopping exponent value from 1/2 to 1/3 as a function of disorder strength and electron density in a sodium-doped silicon MOSFET. The disorder was varied by applying a gate voltage and thermally drifting the ions to different positions in the oxide. The same gate was then used at low temperature to modify the carrier concentration. Magnetoconductivity measurements are compatible with a change in transport mechanisms when either the disorder or the electron density is modified suggesting a possible transition from a Mott insulator to an Anderson insulator in these systems.



قيم البحث

اقرأ أيضاً

Sodium impurities are diffused electrically to the oxide-semiconductor interface of a silicon MOSFET to create an impurity band. At low temperature and at low electron density, the band is split into an upper and a lower sections under the influence of Coulomb interactions. We used magnetoconductivity measurements to provide evidence for the existence of Hubbard bands and determine the nature of the states in each band.
We have studied the temperature dependence of the conductivity of a silicon MOSFET containing sodium ions in the oxide above 20 K. We find the impurity band resulting from the presence of charges at the silicon-oxide interface is split into a lower a nd an upper band. We have observed activation of electrons from the upper band to the conduction band edge as well as from the lower to the upper band. A possible explanation implying the presence of Hubbard bands is given.
By using a combination of detailed experimental studies and simple theoretical arguments, we identify a novel mechanism characterizing the hopping transport in the Mott insulating phase of Ca$_{2-x}$Sr$_x$RuO$_4$ near the metal-insulator transition. The hopping exponent $alpha$ shows a systematic evolution from a value of $alpha=1/2$ deeper in the insulator to the conventional Mott value $alpha=1/3$ closer to the transition. This behavior, which we argue to be a universal feature of disordered Mott systems close to the metal-insulator transition, is shown to reflect the gradual emergence of disorder-induced localized electronic states populating the Mott-Hubbard gap.
The low-temperature Hall resistivity rho_{xy} of La_{2/3}A_{1/3}MnO_3 single crystals (where A stands for Ca, Pb and Ca, or Sr) can be separated into Ordinary and Anomalous contributions, giving rise to Ordinary and Anomalous Hall effects, respective ly. However, no such decomposition is possible near the Curie temperature which, in these systems, is close to metal-to-insulator transition. Rather, for all of these compounds and to a good approximation, the rho_{xy} data at various temperatures and magnetic fields collapse (up to an overall scale), on to a single function of the reduced magnetization m=M/M_{sat}, the extremum of this function lying at m~0.4. A new mechanism for the Anomalous Hall Effect in the inelastic hopping regime, which reproduces these scaling curves, is identified. This mechanism, which is an extension of Holsteins model for the Ordinary Hall effect in the hopping regime, arises from the combined effects of the double-exchange-induced quantal phase in triads of Mn ions and spin-orbit interactions. We identify processes that lead to the Anomalous Hall Effect for localized carriers and, along the way, analyze issues of quantum interference in the presence of phonon-assisted hopping. Our results suggest that, near the ferromagnet-to-paramagnet transition, it is appropriate to describe transport in manganites in terms of carrier hopping between states that are localized due to combined effect of magnetic and non-magnetic disorder. We attribute the qualitative variations in resistivity characteristics across manganite compounds to the differing strengths of their carrier self-trapping, and conclude that both disorder-induced localization and self-trapping effects are important for transport.
We report measurements of the temperature-dependent conductivity in a silicon metal-oxide-semiconductor field-effect transistor that contains sodium impurities in the oxide layer. We explain the variation of conductivity in terms of Coulomb interacti ons that are partially screened by the proximity of the metal gate. The study of the conductivity exponential prefactor and the localization length as a function of gate voltage have allowed us to determine the electronic density of states and has provided arguments for the presence of two distinct bands and a soft gap at low temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا