ترغب بنشر مسار تعليمي؟ اضغط هنا

We measured the pressure dependence of in-plane resistivity $rho_{ab}$ in the recently-discovered iron-based superconductor Ca$_{10}$(Ir$_{4}$As$_{8}$)(Fe$_{2-x}$Ir$_{x}$As$_{2}$)$_{5}$, which shows a unique structural phase transition in the absence of magnetic ordering, with a superconducting transition temperature $T_{rm c}$ = 16 K and structural phase transition temperature $T_{rm s}$ $simeq$ 100 K at ambient pressure. $T_{rm c}$ and $T_{rm s}$ are suppressed on applying pressure and disappear at approximately 0.5 GPa, suggesting a relationship between superconductivity and structure. Ca$_{10}$(Ir$_{4}$As$_{8}$)(Fe$_{2-x}$Ir$_{x}$As$_{2}$)$_{5}$ is a rather rare example in which the superconductivity appears only in a low-temperature ordered phase. The fact that the change in the crystal structure is directly linked with superconductivity suggests that the crystal structure as well as magnetism are important factors governing superconductivity in iron pnictides.
We have performed $^{31}$P-NMR measurements on single-crystalline CeRuPO under pressure in order to understand the variation in magnetic character against pressure. The NMR spectra for $H perp c$ and $H parallel c$ at 2.15GPa split below the ordered temperature, which is a microscopic evidence of the change in the magnetic ground state from the ferromagnetic (FM) state at ambient pressure to the antiferromagnetic (AFM) state under pressure. The analysis of NMR spectra suggests that the magnetic structure in AFM state is the stripe-type AFM state with the AFM moment $m_{rm AFM} perp c$-axis and changes by magnetic field perpendicular to $c$-axis. In addition, the dimensionality of magnetic correlations in the spin and the $k$ space is estimated. We reveal that three-dimensional magnetic correlations in CeRuPO are robust against pressure, which is quite different from the suppression of the magnetic correlations along the $c$-axis by Fe substitution in Ce(Ru$_{1-x}$Fe$_{x}$)PO.
We performed $^{31}$P-NMR measurements on LaFe(As$_{1-x}$P$_{x}$)O to investigate the relationship between antiferromagnetism and superconductivity. The antiferromagnetic (AFM) ordering temperature $T_{rm N}$ and the moment $mu_{rm ord}$ are continuo usly suppressed with increasing P content $x$ and disappear at $x = 0.3$ where bulk superconductivity appears. At this superconducting $x = 0.3$, quantum critical AFM fluctuations are observed, indicative of the intimate relationship between superconductivity and low-energy AFM fluctuations associated with the quantum-critical point in LaFe(As$_{1-x}$P$_{x}$)O. The relationship is similar to those observed in other isovalent-substitution systems, e.g., BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ and SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$, with the 122 structure. Moreover, the AFM order reappears with further P substitution ($x > 0.4$). The variation of the ground state with respect to the P substitution is considered to be linked to the change in the band character of Fe-3$d$ orbitals around the Fermi level.
The pressure dependences of resistivity and ac susceptibility have been measured in the mineral calaverite AuTe$_2$. Resistivity clearly shows a first-order phase transition into a high-pressure phase, consistent with the results of a previous struct ural analysis. We found zero resistivity and a diamagnetic shielding signal at low temperatures in the high-pressure phase, which clearly indicates the appearance of superconductivity. Our experimental results suggest that bulk superconductivity appears only in the high-pressure phase. For AuTe$_2$, the highest superconducting transition temperature under pressure is $T_{rm c}$ = 2.3 K at 2.34 GPa; it was $T_{rm c}$ = 4.0 K for Pt-doped (Au$_{0.65}$Pt$_{0.35}$)Te$_2$. The difference in $T_{rm c}$ between the two systems is discussed on the basis of the results obtained using the band calculations and McMillans formula.
We report the $^{121/123}$Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi$_2$Sb$_2$O with a two-dimensional Ti$_2$O square-net layer formed with Ti$^{3+}$ (3$d^1$). NQR measurements revealed that the in-plane four-fold symmetry is broken at the Sb site below $T_{rm A} sim$ 40 K, without an internal field appearing at the Sb site. These exclude a spin-density wave (SDW)/ charge density wave (CDW) ordering with incommensurate correlations, but can be understood with the commensurate CDW ordering at $T_{rm A}$. The spin-lattice relaxation rate $1/T_1$, measured at the four-fold symmetry breaking site, decreases below superconducting (SC) transition temperature $T_{rm c}$, indicative of the microscopic coexistence of superconductivity and the CDW/SDW phase below $T_{rm A}$. Furthermore, $1/T_1$ of $^{121}$Sb-NQR shows a coherence peak just below $T_{rm c}$ and decreases exponentially at low temperatures. These results are in sharp contrast with those in cuprate and iron-based superconductors, and strongly suggest that its SC symmetry is classified to an ordinary s-wave state.
166 - S. Kitagawa , H. Ikeda , Y. Nakai 2011
We report that nonmagnetic heavy-fermion (HF) iron oxypnictide CeFePO with two-dimensional XY-type anisotropy shows a metamagnetic behavior at the metamagnetic field H_M simeq 4 T perpendicular to the c-axis and that a critical behavior is observed a round H_M. Although the magnetic character is entirely different from that in other Ce-based HF metamagnets, H_M in these metamagnets is linearly proportional to the inverse of the effective mass, or to the temperature where the susceptibility shows a peak. This finding suggests that H_M is a magnetic field breaking the local Kondo singlet, and the critical behavior around H_M is driven by the Kondo breakdown accompanied by the Fermi-surface instability.
The anisotropy of the nuclear spin-lattice relaxation rate $1/T_{1}$ of $^{75}$As was investigated in the iron-based superconductor LaFeAs(O$_{1-x}$F$_{x}$) ($x = 0.07, 0.11$ and 0.14) as well as LaFeAsO. While the temperature dependence of the norma l-state $1/T_1T$ in the superconducting (SC) $x = 0.07$ is different from that in the SC $x = 0.11$, their anisotropy of $1/T_1$, $R equiv (1/T_{1})_{H parallel ab}/(1/T_{1})_{H parallel c}$ in the normal state is almost the same ($simeq$ 1.5). The observed anisotropy is ascribable to the presence of the local stripe correlations with $Q = (pi, 0)$ or $(0, pi)$. In contrast, $1/T_1$ is isotropic and $R$ is approximately 1 in the overdoped $x = 0.14$ sample, where superconductivity is almost suppressed. These results suggest that the presence of the local stripe correlations originating from the nesting between hole and electron Fermi surfaces is linked to high-$T_c$ superconductivity in iron pnictides.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا