ترغب بنشر مسار تعليمي؟ اضغط هنا

S wave superconductivity in newly discovered superconductor BaTi$_2$Sb$_2$O revealed by $^{121/123}$Sb-NMR/Nuclear Quadrupole Resonance measurements

369   0   0.0 ( 0 )
 نشر من قبل Shunsaku Kitagawa
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the $^{121/123}$Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi$_2$Sb$_2$O with a two-dimensional Ti$_2$O square-net layer formed with Ti$^{3+}$ (3$d^1$). NQR measurements revealed that the in-plane four-fold symmetry is broken at the Sb site below $T_{rm A} sim$ 40 K, without an internal field appearing at the Sb site. These exclude a spin-density wave (SDW)/ charge density wave (CDW) ordering with incommensurate correlations, but can be understood with the commensurate CDW ordering at $T_{rm A}$. The spin-lattice relaxation rate $1/T_1$, measured at the four-fold symmetry breaking site, decreases below superconducting (SC) transition temperature $T_{rm c}$, indicative of the microscopic coexistence of superconductivity and the CDW/SDW phase below $T_{rm A}$. Furthermore, $1/T_1$ of $^{121}$Sb-NQR shows a coherence peak just below $T_{rm c}$ and decreases exponentially at low temperatures. These results are in sharp contrast with those in cuprate and iron-based superconductors, and strongly suggest that its SC symmetry is classified to an ordinary s-wave state.


قيم البحث

اقرأ أيضاً

162 - Chao Mu , Qiangwei Yin , Zhijun Tu 2021
We report $^{121/123}$Sb nuclear quadrupole resonance (NQR) and $^{51}$V nuclear magnetic resonance (NMR) measurements on kagome metal CsV$_3$Sb$_5$ with $T_{rm c}=2.5$ K. Both $^{51}$V NMR spectra and $^{121/123}$Sb NQR spectra split after a charge density wave (CDW) transition, which demonstrates a commensurate CDW state. The coexistence of the high temperature phase and the CDW phase between $91$ K and $94$ K manifests that it is a first order phase transition. At low temperature, electric-field-gradient fluctuations diminish and magnetic fluctuations become dominant. Superconductivity emerges in the charge order state. Knight shift decreases and $1/T_{1}T$ shows a Hebel--Slichter coherence peak just below $T_{rm c}$, indicating that CsV$_3$Sb$_5$ is an s-wave superconductor.
In this Rapid Communication, a set of $^{209}$Bi-nuclear magnetic resonance (NMR)/nuclear quadrupole resonance (NQR) measurements has been performed to investigate the physical properties of superconducting (SC) BaTi$_2$Bi$_2$O from a microscopic poi nt of view. The NMR and NQR spectra at 5~K can be reproduced with a non-zero in-plane anisotropic parameter $eta$, indicating the breaking of the in-plane four-fold symmetry at the Bi site without any magnetic order, i.e., `the electronic nematic state. In the SC state, the nuclear spin-lattice relaxation rate divided by temperature, $1/T_1T$, does not change even below $T_{rm c}$, while a clear SC transition was observed with a diamagnetic signal. This observation can be attributed to the strong two-dimensionality in BaTi$_2$Bi$_2$O. Comparing the NMR/NQR results among BaTi$_2$$Pn$$_2$O ($Pn$ = As, Sb, and Bi), it was found that the normal and SC properties of BaTi$_2$Bi$_2$O were considerably different from those of BaTi$_2$Sb$_2$O and BaTi$_2$As$_2$O, which might explain the two-dome structure of $T_{rm c}$ in this system.
124 - J. Luo , Z. Zhao , Y. Z. Zhou 2021
$A$V$_3$Sb$_5$ ($A$ = K, Rb, Cs) is a novel kagome superconductor coexisting with the charge density wave (CDW) order. Identifying the structure of the CDW order is crucial for understanding the exotic normal state and superconductivity in this syste m. Here, we report $^{51}$V nuclear magnetic resonance (NMR) and $^{121/123}$Sb nuclear quadrupole resonance (NQR) studies on kagome-metal CsV$_3$Sb$_5$. Below the CDW transition temperature $T_textrm{CDW} sim$ 98 K, an abrupt change of spectra was observed, indicating that the transition is of the first order. By further analysing the spectra, we find that the CDW order is commensurate. And most remarkably, we obtain the first experimental evidence that the charge modulation of the CDW order is of star-of-David pattern and accompanied by an additional charge modulation in bulk below $T^* sim$ 40 K. Our results revealing the unconventional CDW order provide new insights into $A$V$_3$Sb$_5$.
We performed $^{185/187}$Re nuclear quadrupole resonance (NQR) measurements under pressure to investigate the superconducting properties of noncentrosymmetric superconductor Cd$_{2}$Re$_{2}$O$_{7}$ under various crystal structures. The pressure depen dence of superconducting transition temperature $T_{rm c}$ determined through ac susceptibility measurements is consistent with the results of previous resistivity measurements [T. C. Kobayashi $et al$., J. Phys. Soc. Jpn. 80, 023715 (2011).]. Below 2.2 GPa, in the nuclear spin-lattice relaxation rate $1/T_{1}$, a clear coherence peak was observed just below $T_{rm c}$, indicating conventional $s$-wave superconductivity. In contrast, the coherence peak disappears at 3.1 GPa, suggesting a change in superconducting symmetry to the $p$-wave dominant state against pressure.
133 - Z. Huang , W. L. Liu , H. Y. Wang 2020
Topological superconductors have long been predicted to host Majorana zero modes which obey non-Abelian statistics and have potential for realizing non-decoherence topological quantum computation. However, material realization of topological supercon ductors is still a challenge in condensed matter physics. Utilizing high-resolution angle-resolved photoemission spectroscopy and first-principles calculations, we predict and then unveil the coexistence of topological Dirac semimetal and topological insulator states in the vicinity of Fermi energy ($E_F$) in the titanium-based oxypnictide superconductor BaTi$_2$Sb$_2$O. Further spin-resolved measurements confirm its spin-helical surface states around $E_F$, which are topologically protected and give an opportunity for realization of Majorana zero modes and Majorana flat bands in one material. Hosting dual topological superconducting states, the intrinsic superconductor BaTi$_2$Sb$_2$O is expected to be a promising platform for further investigation of topological superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا