ﻻ يوجد ملخص باللغة العربية
We report that nonmagnetic heavy-fermion (HF) iron oxypnictide CeFePO with two-dimensional XY-type anisotropy shows a metamagnetic behavior at the metamagnetic field H_M simeq 4 T perpendicular to the c-axis and that a critical behavior is observed around H_M. Although the magnetic character is entirely different from that in other Ce-based HF metamagnets, H_M in these metamagnets is linearly proportional to the inverse of the effective mass, or to the temperature where the susceptibility shows a peak. This finding suggests that H_M is a magnetic field breaking the local Kondo singlet, and the critical behavior around H_M is driven by the Kondo breakdown accompanied by the Fermi-surface instability.
Physical properties of polycrystalline CeCrGe$_{3}$ and LaCrGe$_{3}$ have been investigated by x-ray absorption spectroscopy, magnetic susceptibility $chi(T)$, isothermal magnetization M(H), electrical resistivity $rho(T)$, specific heat C($T$) and t
The ground state properties of CeFePO, a homologue of the new high temperature superconductors RFePnO(1-x)Fx, were studied by means of susceptibility, specific heat, resistivity, and NMR measurements on polycrystals. All the results demonstrate that
We have studied the magnetization of the recently discovered heavy fermion superconductor UTe$_2$ up to 56 T in pulsed-magnetic fields. A first-order metamagnetic transition has been clearly observed at $H_{rm m}$ =34.9 T when the magnetic field $H$
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic
We report the thermodynamic, magnetic, and electronic transport properties of the new ternary intermetallic system (Ce,La)3Pt4In13. Ce3Pt4In13 orders antiferromagnetically at 0.95 K while the non-magnetic compound La3Pt4In13 is a conventional 3.3 K s